精英家教网 > 高中数学 > 题目详情
12.函数f(x)=x2+2tx-1的单调递增区间是(-1,+∞).

分析 求出函数的对称轴,结合函数的开口方向,求出函数的递增区间即可.

解答 解:f(x)的对称轴是x=-t,开口向上,
故f(x)在(-t,+∞)递增,
故答案为:(-1,+∞).

点评 本题考查了二次函数的性质,考查函数的单调性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=4x的焦点为F,过焦点的直线与抛物线交于A,B两点,则3|AF|+4|BF|的最小值为7+4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知正四棱锥的顶点都在同一球面上,且该棱锥的高为 4,底面边长为2$\sqrt{2}$,则该球的表面积为25π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成直接经济损失12.99亿元.适逢暑假,小明调查了某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如图频率分布直方图.
(Ⅰ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过6000元的居民中随机抽出2户进行捐款援助,求这两户在同一分组的概率;
(Ⅱ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过
4000元
经济损失超过
4000元
合计
捐款超过
500元
30
捐款不超
过500元
6
合计
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手大多在以下两个年龄段:21~30,31~40(单位:岁),统计这两个年龄段选手答对歌曲名称与否的人数如图所示.
(1)写出2×2列联表,并判断是否有90%的把握认为答对歌曲名称与否和年龄有关,说明你的理由.(下面的临界值表供参考)
P(K2≥k0 0.1 0.050.01  0.005
 k0 2.7063.841  6.6357.879 
(2)在统计过的参考选手中按年龄段分层选取9名选手,并抽取3名幸运选手,求3名幸运选手中在21~30岁年龄段的人数的分布列和数学期望.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若某几何体的三视图如图所示,则此几何体的体积等于(  )
A.30B.24C.12D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足a1=4,an=$\frac{{4{a_{n-1}}-4}}{{{a_{n-1}}}}$,记bn=$\frac{1}{{{a_n}-2}}$.
(1)求证:数列{bn}是等差数列;
(2)求数列{bn}前n项和Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)=x2+bx+c(b、c∈R).
(1)设m∈R,函数g(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x+m,x≥0}\\{f(x),x<0}\end{array}\right.$为奇函数,求b+c的值;
(2)若f(x)=x没有实数根,问:f(f(x))=x是否有实数根?并证明你的结论;
(3)若对一切θ∈R,有f($\frac{2}{sinθ}$)≥0,且f(2+$\frac{1}{1+ta{n}^{2}θ}$的最大值为1,求b、c满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=2aex-x2+3(a为常数,e是自然对数的底)恰有两个极值点,则实数a的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

同步练习册答案