精英家教网 > 高中数学 > 题目详情
3.已知正四棱锥的顶点都在同一球面上,且该棱锥的高为 4,底面边长为2$\sqrt{2}$,则该球的表面积为25π.

分析 正四棱锥P-ABCD的外接球的球心在它的高PE上,求出球的半径,求出球的表面积.

解答 解:如图,正四棱锥P-ABCD中,PE为正四棱锥的高,根据球的相关知识可知,正四棱锥的外接球的球心O必在正四棱锥的高线PE所在的直线上,延长PE交球面于一点F,连接AE,AF,
由球的性质可知△PAF为直角三角形且AE⊥PF,根据平面几何中的射影定理可得PA2=PF•PE,
因为AE=2,
所以侧棱长PA=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,PF=2R,
所以20=2R×4,所以R=$\frac{5}{2}$,
所以S=4πR2=25π
故答案为:25π.

点评 本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),且f(-1)=2,则f(2017)的值是(  )
A.2B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x、y满足$\left\{\begin{array}{l}y≥1\\ x-y+1≥0\\ x+y-4≤0\end{array}\right.$,则z=|3x+y|的最大值为(  )
A.1B.6C.7D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列对应值如表:
x-$\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$$\frac{4π}{3}$$\frac{11π}{6}$$\frac{7π}{3}$$\frac{17π}{6}$
y-1131-113
(1)根据表格提供的数据求函数f(x)的一个解析式;
(2)根据(1)的结果:
( i)当x∈[0,$\frac{π}{3}$]时,方程f(3x)=m恰有两个不同的解,求实数m的取值范围;
( ii)若α,β是锐角三角形的两个内角,试比较f(sinα)与f(cosβ)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x1,x2是方程4x2-4mx+(m-1)2+2=0的两个实根,则x${\;}_{1}^{2}$+x${\;}_{2}^{2}$的最小值为$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥面ABCD,E为PD的中点.
(1)求证:PB∥平面AEC;
(2)设AP=1,AD=2,∠ABC=60°,求点A到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(  )
A.100B.92C.84D.76

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=x2+2tx-1的单调递增区间是(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数a,b满足4a+b=ab,(a≥b>0),则a+b的最小值为9.

查看答案和解析>>

同步练习册答案