精英家教网 > 高中数学 > 题目详情
10.已知x、y满足$\left\{\begin{array}{l}y≥1\\ x-y+1≥0\\ x+y-4≤0\end{array}\right.$,则z=|3x+y|的最大值为(  )
A.1B.6C.7D.10

分析 画出约束条件的可行域,确定目标函数经过的点,利用几何意义求出目标函数的最大值,

解答 解:作出不等式组表示的可行域如图
目标函数z=|3x+y|经过可行域内的点A时,
z最大,$\left\{\begin{array}{l}{y=1}\\{x+y-4=0}\end{array}\right.$可得A(3,1)时,取得最大值|3×3+1|=10.
故选:D.

点评 本题考查简单的线性规划的应用,画出约束条件的可行域,确定特殊点的坐标,是解题的关键,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如图给出的是计算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2015}$的值的一个程序框图,则图中执行框中的①处和判断框中的②处应填的语句是(  )
A.n=n+1,i>1009B.n=n+2,i>1009C.n=n+1,i>1008D.n=n+2,i>1008

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a,b,c为△ABC的三个角A,B,C所对的边,若3bcosC=c(1-3cosB),sinC:sinA=(  )
A.2:3B.4:3C.3:1D.3:2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=4x的焦点为F,过焦点的直线与抛物线交于A,B两点,则3|AF|+4|BF|的最小值为7+4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a>0,b∈R,函数f(x)=4ax2-2bx-a+b.
(1)证明:当0≤x≤1时,(i)函数f(x)的最大值为|2a-b|+a;
                                     (ii)f(x)+|2a-b|+a≥0;
(2)若-1≤f(x)≤1对任意x∈[0,1]恒成立,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在三棱锥V-ABC中,VA⊥VC,AB⊥BC,∠VAC=∠ACB=45°,若侧面VAC⊥底面ABC,则其主视图与左视图面积之比为(  )
A.2:1B.2:$\sqrt{3}$C.$\sqrt{2}$:1D.1:1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$∥$\overrightarrow{a}$,且|$\overrightarrow{b}$|=10,求向量$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知正四棱锥的顶点都在同一球面上,且该棱锥的高为 4,底面边长为2$\sqrt{2}$,则该球的表面积为25π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足a1=4,an=$\frac{{4{a_{n-1}}-4}}{{{a_{n-1}}}}$,记bn=$\frac{1}{{{a_n}-2}}$.
(1)求证:数列{bn}是等差数列;
(2)求数列{bn}前n项和Sn的最小值.

查看答案和解析>>

同步练习册答案