精英家教网 > 高中数学 > 题目详情
17.若某几何体的三视图如图所示,则此几何体的体积等于(  )
A.30B.24C.12D.4

分析 由三视图知该几何体一个直三棱柱切去一个三棱锥所得的组合体,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.

解答 解:根据三视图可该几何体是一个直三棱柱截去一个三棱锥后所剩几何体,
三棱柱的底面为边长为3,4,5的直角三角形,高为5,
截去的三棱锥底面与三棱柱相同,高为3,如图所示:
所以该几何体的体积V=V三棱柱-V三棱锥
=$\frac{1}{2}$×3×4×5-$\frac{1}{3}$×$\frac{1}{2}$×3×4×3=24,
故选:B.

点评 本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查了空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知平面向量$\vec a$,$\vec b$夹角为$\frac{π}{3}$,|$\vec a$-$\vec b}$|=|${\vec b}$|=3,则|m$\vec a$+$\frac{1-m}{2}$$\vec b}$|(m∈R)的最小值$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥面ABCD,E为PD的中点.
(1)求证:PB∥平面AEC;
(2)设AP=1,AD=2,∠ABC=60°,求点A到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x-2)2+alnx.
(1)若a=-6,求f(x)的单调区间;
(2)若f(x)存在两个极值点x1,x2,且x1<x2,求证:$\frac{f({x}_{1})}{{x}_{2}}$≥2(1-e${\;}^{-\frac{1}{2}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=x2+2tx-1的单调递增区间是(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.要完成下列3项抽样调查:
①从15瓶饮料中抽取5瓶进行食品卫生检查.
②某校报告厅有25排,每排有38个座位,有一次报告会恰好坐满了学生,报告会结束后,为了听取意见,需要抽取25名学生进行座谈.
③某中学共有240名教职工,其中一般教师180名,行政人员24名,后勤人员36名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.
较为合理的抽样方法是(  )
A.①简单随机抽样,②系统抽样,③分层抽样
B.①简单随机抽样,②分层抽样,③系统抽样
C.①系统抽样,②简单随机抽样,③分层抽样
D.①分层抽样,②系统抽样,③简单随机抽样

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一个几何体的三视图(单位:m)如图所示,则此几何体的表面积为12π+12m2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.平面a截半径为R的球O得到一个半径为$\frac{{\sqrt{3}R}}{2}$的截面圆O′,三棱锥S-ABC内接于球O,且△ABC是圆O′的内接正三角形,若O′S=R,则三棱锥S-ABC与球O的体积之比为$\frac{{9\sqrt{3}}}{256π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若x=2是函数f(x)=x(x-m)2的极大值点,则m的值为(  )
A.3B.6C.2或6D.2

查看答案和解析>>

同步练习册答案