精英家教网 > 高中数学 > 题目详情
2.L一个几何体的三视图如图所示(单位:m),其正视图、侧视图均有一个角为60°的菱形,俯视图为边长为1的
正方形,则该几何体的体积为(  )
A.$\frac{\sqrt{3}π}{12}$m3B.$\frac{\sqrt{3}π}{6}$m3C.$\frac{\sqrt{3}}{3}$m3D.$\frac{\sqrt{3}}{6}$m3

分析 由三视图知该几何体两个大小相同的正四棱锥的组合体,由三视图求出几何元素的长度,由锥体的体积公式求出该几何体的体积.

解答 解:由三视图知几何体为两个大小相同的正四棱锥的组合体,
∵正视图、侧视图均有一个角为60°的菱形,俯视图为边长为1m的正方形,
∴正四棱锥的高是正视图、侧视图中边长为1m的正三角形的高$\frac{\sqrt{3}}{2}$(m
∴该几何体的体积V=2×$\frac{1}{3}×1×1×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{3}$(m3),
故选:C.

点评 本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|log2(x+1)<2},B={x|(x-1)(x-3)=0},则A∪B等于(  )
A.(-1,3)B.(-1,3]C.(1,3)D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求证:x8-x5+x2-x+1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ln($\frac{x-1}{3}$)+$\frac{a}{x+2}$(a∈R).
(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;
(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知正四棱锥S-ABCD的侧棱长为2,侧面积为$2\sqrt{15}$,则其外接球的体积为$\frac{32π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手大多在以下两个年龄段:21~30,31~40(单位:岁),统计这两个年龄段选手答对歌曲名称与否的人数如图所示.
(1)写出2×2列联表,并判断是否有90%的把握认为答对歌曲名称与否和年龄有关,说明你的理由.(下面的临界值表供参考)
P(K2≥k0 0.1 0.050.01  0.005
 k0 2.7063.841  6.6357.879 
(2)在统计过的参考选手中按年龄段分层选取9名选手,并抽取3名幸运选手,求3名幸运选手中在21~30岁年龄段的人数的分布列和数学期望.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知在三棱锥P-ABC中,VP-ABC=$\frac{{4\sqrt{3}}}{3}$,∠APC=$\frac{π}{4}$,∠BPC=$\frac{π}{3}$,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱锥P-ABC外接球的体积为(  )
A.$\frac{4π}{3}$B.$\frac{{8\sqrt{2}π}}{3}$C.$\frac{{12\sqrt{3}π}}{3}$D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三棱锥P-ABC的底面是边长为6的正三角形,PA⊥底面ABC,PA=4,则三棱锥P-ABC外接球的表面积为64π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若双曲线$\frac{y^2}{a^2}$-$\frac{x^2}{b^2}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{{\sqrt{3}}}{3}$x,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.3C.$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案