精英家教网 > 高中数学 > 题目详情
10.如图:在△ABC中,D为AB边上一点,DA=DC,已知∠B=$\frac{π}{4}$,BC=3
(1)若△BCD为锐角三角形,DC=$\sqrt{6}$,求角A的大小;
(2)若△BCD的面积为$\frac{3}{2}$,求边AB的长.

分析 (1)由已知及正弦定理可求$sin∠CDB=\frac{{\sqrt{3}}}{2}$,结合△BCD为锐角三角形,可求∠CDB,进而可求∠ADC的值,又DA=DC,利用等腰三角形的性质即可得解∠A的值.
(2)利用三角形面积公式可求BD的值,利用余弦定理可求得CD的值,进而可求AB=CD+BD的值.

解答 (本题满分为12分)
解:(1)因为:在△BCD中,由正弦定理得$\frac{BC}{sin∠CDB}=\frac{CD}{{sin{{45}^0}}}$,
所以:$sin∠CDB=\frac{{\sqrt{3}}}{2}$,
又因为:△BCD为锐角三角形,
所以:∠CDB=60°,
所以:∠ADC=120°,DA=DC,
所以:∠A=∠ACD=30°,∠A=30°.…(5分)
(2)因为:${S_{△BCD}}=\frac{3}{2}$,
所以:$\frac{1}{2}×BD×BCsin{45^0}=\frac{3}{2}$,
所以:$BD=\sqrt{2}$,
在△BCD中由余弦定理得:CD2=BD2+BC2-2BD×BCcos∠B=2+9-6=5,
所以:$CD=\sqrt{5}$,
所以:$AB=AD+BD=CD+BD=\sqrt{5}+\sqrt{2}$.…(12分)

点评 本题主要考查了正弦定理,等腰三角形的性质,三角形面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为直角梯形,∠ABC=∠DAB=$\frac{π}{2}$,AB=2$\sqrt{3}$,BC=2,AD=3,平面ABD1与棱CC1交于点P.
(Ⅰ)求证:BP∥AD1
(Ⅱ)若直线A1P与平面BDP所成角的正弦值为$\frac{3\sqrt{10}}{10}$,求AA1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{15}}{4}$,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2$\sqrt{15}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设圆T:(x-2)2+y2=$\frac{4}{9}$,过椭圆的上顶点M作圆T的两条切线交椭圆于E、F两点,求直线EF的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知实数m>1,定点A(-m,0),B(m,0),S为一动点,点S与A,B两点连线的斜率之积为-$\frac{1}{m^2}$.
(Ⅰ)求动点S的轨迹C的方程,并指出它是哪一种曲线;
(Ⅱ)当m=$\sqrt{2}$时,问t取何值时,直线l:2x-y+t=0(t>0)与曲线C有且仅有一个交点?
(Ⅲ)在(Ⅱ)的条件下,证明:直线l上横坐标小于2的点P到点(1,0)的距离与到直线x=2的距离之比的最小值等于曲线C的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若变量x,y满足条件$\left\{\begin{array}{l}y≤x\\ x+y≤4\\ y≥k\end{array}\right.$,且z=2x+y的最小值为-6,则k=(  )
A.3B.-3C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,若输入K=5,则输出的S是(  )
A.18B.50C.78D.306

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点P(-2,1)引抛物线y2=4x的两条切线,切点分别为A,B,F是抛物线y2=4x的焦点,则直线PF与直线AB的斜率之和为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序,若输入的x=3,则输出的所有x的值的和为(  )
A.243B.363C.729D.1092

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=2tan(2x+$\frac{π}{6}$)的最小正周期是(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案