精英家教网 > 高中数学 > 题目详情
2.过点P(-2,1)引抛物线y2=4x的两条切线,切点分别为A,B,F是抛物线y2=4x的焦点,则直线PF与直线AB的斜率之和为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{5}{3}$

分析 先确定F点坐标,进而求出直线PF斜率kPF,再求出两个切点AB的坐标,求出直线AB斜率kAB,相加可得答案.

解答 解:∵抛物线y2=4x的焦点F坐标为(1,0),点P(-2,1),
故直线PF斜率kPF=-$\frac{1}{3}$,
设点P(-2,1)与抛物线y2=4x相切的直线为:x+2=m(y-1),
则y2=4(my-m-2),即y2-4my+4m+8=0的△=16m2-16m-32=0,
解得:m=-1,或m=2,
当m=-1时,方程y2-4my+4m+8=0可化为y2+4y+4=0,解得:y=-2,代入y2=4x得:x=1,
当m=2时,方程y2-4my+4m+8=0可化为y2-8y+16=0,解得:y=4,代入y2=4x得:x=4,
即A,B两点的坐标为A(1,-2),B(4,4),所以kAB=$\frac{4+2}{4-1}$=2,
从而${k_{PF}}+{k_{AB}}=\frac{5}{3}$.
故选:D.

点评 本题考查的知识点是抛物线的简单性质,直线的斜率,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.等比数列{an}中,an=54.前n项和前2n项和分别为Sn=80,S2n=6560.
(1)求首项a1和公比q;
(2)若A1=$\frac{π}{4}$,数列{An}满足An-An-1=a1•$\frac{π}{6}$,(n≥2),设cn=tanAntanAn-1.求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=ln(x-1)-$\frac{3}{x}$的零点在区间(k,k+1)(k∈Z)上,则k的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图:在△ABC中,D为AB边上一点,DA=DC,已知∠B=$\frac{π}{4}$,BC=3
(1)若△BCD为锐角三角形,DC=$\sqrt{6}$,求角A的大小;
(2)若△BCD的面积为$\frac{3}{2}$,求边AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x,y满足约束条件$\left\{\begin{array}{l}x+y≤1\\ x-y≤1\\ x≥0\end{array}\right.$,则目标函数z=2x-y的取值范围为[-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)经过点($\sqrt{3}$,-2),且渐近线方程为y=±2x,则该双曲线的实轴长为(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)∈R,g(x)∈R,有以下命题:
①若f[f(x)]=f(x),则f(x)=x;    
 ②若f[f(x)]=x,则f(x)=x;
③若f[g(x)]=x,且g(x)=g(y),则x=y.
其中是真命题的序号是(写出所有满足条件的命题序号)(  )
A.B.C.D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设F1,F2分别为椭圆C1:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)与双曲线C2:$\frac{x^2}{a_1^2}$-$\frac{y^2}{b_1^2}$=1(a1>0,b1>0)的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若椭圆的离心率e=$\frac{3}{4}$,则双曲线C2的离心率e1为(  )
A.$\frac{9}{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$\frac{3}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=x2-x+c,|x-a|<1,求证:|f(x)-f(a)|<2(|a|+1).

查看答案和解析>>

同步练习册答案