科目:高中数学 来源:教材完全解读 高中数学 必修5(人教B版课标版) 人教B版课标版 题型:044
已知实数x、y满足![]()
(1)求w=x2+y2的最大值、最小值;
(2)求u=x2+y的最大值、最小值;
(3)求t=
的最大值、最小值.
查看答案和解析>>
科目:高中数学 来源:学习周报 数学 北师大课标高二版(选修2-2) 2009-2010学年 第27期 总第183期 北师大课标 题型:044
已知x>0,y>0,x+2y=1,我们可以通过下面方法求
+
的最小值.
由
+
=(
+
)(x+2y)=3+
+
≥3+2
.
类比以上方法,求解下列问题:
已知a,b为正常数,且a+b=10,x,y为正数,且
+
=1,又x+y的最小值为18,求a,b(a>b)的值.
查看答案和解析>>
科目:高中数学 来源:学习周报 数学 北师大课标高二版(选修1-2) 2009-2010学年 第32期 总第188期 北师大课标 题型:044
已知x>0,y>0,x+2y=1,我们可以通过下面方法求
+
的最小值.
由
+
=(
+
)(x+2y)=3+
+
≥3+2
.
类比以上方法,求解下列问题:
已知a,b为正常数,且a+b=10,x,y为正数,且
+
=1,又x+y的最小值为18,求a,b(a>b)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知定义在正实数集上的函数f(x)=
x2+2ax,g(x)=3a2lnx+b,其中a>0,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(1)用a表示b;
(2)求F(x)=f(x)-g(x)的极值;
(3)求b的最大值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年河北省高三8月月考理科数学试卷(解析版) 题型:解答题
已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.
(1)求f(x)的解析式;
(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依题意![]()
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)设切点为(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)
又切线过点A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
则g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.
∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2
画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,
所以m的取值范围是(-6,2).
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com