Éèn¡ÊN*£¬²»µÈʽ×é
x£¾0
y£¾0
y¡Ü-nx+2n
Ëù±íʾµÄƽÃæÇøÓòΪDn£¬°ÑDnÄÚµÄÕûµã£¨ºá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã£©°´Æäµ½Ô­µãµÄ¾àÀë´Ó½üµ½Ô¶ÅÅÁгɵãÁУº£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡­£¬£¨xn£¬yn£©
£¨1£©Çó£¨xn£¬yn£©£»
£¨2£©ÉèÊýÁÐ{an}Âú×ãa1=x1£¬an=
y
2
n
(
1
y
2
1
+
1
y
2
2
+¡­+
1
y
2
n-1
)£¬(n¡Ý2)
£¬ÇóÖ¤£ºn¡Ý2ʱ£¬
an+1
(n+1
)
2
 
-
an
n
2
 
=
1
n
2
 
£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬±È½Ï(1+
1
a1
)(1+
1
a2
)¡­(1+
1
an
)
Óë4µÄ´óС£®
·ÖÎö£º£¨1£©ÓÉ-nx+2n£¾0¼°x£¾0µÃ0£¼x£¼2£¬ÒòΪx¡ÊN*£¬ËùÒÔx=1£¬´Ó¶øx=1Óëy=-nx+2nµÄ½»µãΪ£¨1£¬n£©£¬¼´ËùÒÔDnÄÚµÄÕûµã£¨xn£¬yn£©Îª£¨1£¬n£©
£¨2£©ÏÈ»¯¼òΪ
an
n2
=
1
1
2
 
+
1
2
2
 
+¡­+
1
(n-1
)
2
 
£¬Á½Ê½Ïà¼õ¼´¿ÉÖ¤µÃ
£¨3£©ÏȲÂÏ룺n¡ÊN*ʱ£¬(1+
1
a1
)(1+
1
a2
)¡­(1+
1
an
)£¼4
£¬ÔÙÀûÓã¨2£©µÄ½áÂÛ¿ÉÒÔÖ¤Ã÷£®
½â´ð£º½â£º£¨1£©ÓÉ-nx+2n£¾0¼°x£¾0µÃ0£¼x£¼2£¬ÒòΪx¡ÊN*£¬ËùÒÔx=1
ÓÖx=1Óëy=-nx+2nµÄ½»µãΪ£¨1£¬n£©£¬ËùÒÔDnÄÚµÄÕûµã£¬°´Óɽüµ½Ô¶ÅÅÁÐΪ£º
£¨1£¬1£©£¬£¨1£¬2£©£¬¡­£¬£¨1£¬n£©------------------£¨4·Ö£©
£¨2£©Ö¤Ã÷£ºn¡Ý2ʱ£¬an=
y
2
n
(
1
y
2
1
+
1
y
2
2
+¡­+
1
y
2
n-1
)=n2(
1
1
2
 
+
1
2
2
 
+¡­+
1
(n-1
)
2
 
)

ËùÒÔ
an
n2
=
1
1
2
 
+
1
2
2
 
+¡­+
1
(n-1
)
2
 
£¬
an+1
(n+1)2
=
1
1
2
 
+
1
2
2
 
+¡­+
1
n
2
 

Á½Ê½Ïà¼õµÃ£º
an+1
(n+1
)
2
 
-
an
n
2
 
=
1
n
2
 
------------------£¨9·Ö£©
£¨3£©n=1ʱ£¬1+
1
a1
=2£¼4
£¬n=2ʱ£¬(1+
1
a1
)(1+
1
a2
)=
5
2
£¼4

¿É²ÂÏ룺n¡ÊN*ʱ£¬(1+
1
a1
)(1+
1
a2
)¡­(1+
1
an
)£¼4
------------------£¨11·Ö£©
ÊÂʵÉÏn¡Ý3ʱ£¬ÓÉ£¨2£©Öª
1+an
a
 
n+1
=
n2
(n+1
)
2
 

ËùÒÔ(1+
1
a1
)(1+
1
a2
)¡­(1+
1
an
)=
1+a1
a1
1+a2
a2
1+a3
a3
•¡­•
1+an
an

=
1+a1
a1
1
a2
•[
1+a2
a3
1+a3
a4
•¡­•
1+an-1
an
]•(1+an)

=2•
1
4
•(
2
3
)2•(
3
4
)2•¡­•(
n-1
n
)2•(
n
n+1
)2an+1

=
2an+1
(n+1)2
=2(
1
12
+
1
22
+
1
32
+¡­+
1
n2
) ¡­(13·Ö)

£¼2[1+
1
1¡Á2
+
1
2¡Á3
+¡­+
1
(n-1)¡Án
]

=2(1+1-
1
2
+
1
2
-
1
3
+¡­+
1
n-1
-
1
n
)£¼4
-----£¨15·Ö£©
µãÆÀ£º±¾ÌâÒÔÏßÐԹ滮ΪÔØÌ壬¿¼²éÊýÁС¢²»µÈʽµÄÖ¤Ã÷£¬Ó¦×¢Òâ³ä·ÖÍÚ¾òÌâÄ¿µÄÌõ¼þ£¬ºÏÀíת»¯
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ö£ÖݶþÄ££©Éèf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÔöº¯Êý£¬ÇÒ¶ÔÓÚÈÎÒâµÄx¶¼ÓÐf£¨1-x£©+f£¨1+x£©=0ºã³ÉÁ¢£®Èç¹ûʵÊým¡¢nÂú×ã²»µÈʽ×é
f(m2-6m+23)+f(n2-8n)£¼0
m£¾3
£¬ÄÇôm2+n2µÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèn¡ÊN*£¬²»µÈʽ×éËù±íʾµÄƽÃæÇøÓòΪDn£¬°ÑDnÄÚµÄÕûµã£¨ºá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã£©°´Æäµ½Ô­µãµÄ¾àÀë´Ó½üµ½Ô¶ÅÅÁгɵãÁУº(x1,y1),(x2,y2),¡­,(xn,yn).

£¨1£©Çó(xn,yn)£»

£¨2£©ÉèÊýÁÐ{an}Âú×ãa1=x1,an=yn2(++¡­+)(n¡Ý2),ÇóÖ¤£ºn¡Ý2ʱ£¬£»

£¨3£©ÔÚ£¨2a£©µÄÌõ¼þÏ£¬±È½Ï(1+)(1+)¡­(1+)Óë4µÄ´óС.

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2012-2013ѧÄêÌì½òÒ»ÖиßÈý£¨Ï£©µÚ¶þ´ÎÔ¿¼ÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Éèn¡ÊN*£¬²»µÈʽ×éËù±íʾµÄƽÃæÇøÓòΪDn£¬°ÑDnÄÚµÄÕûµã£¨ºá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã£©°´Æäµ½Ô­µãµÄ¾àÀë´Ó½üµ½Ô¶ÅÅÁгɵãÁУº£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡­£¬£¨xn£¬yn£©
£¨1£©Çó£¨xn£¬yn£©£»
£¨2£©ÉèÊýÁÐ{an}Âú×㣬ÇóÖ¤£ºn¡Ý2ʱ£¬£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬±È½ÏÓë4µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2007-2008ѧÄêÕã½­Ê¡ÎÂÖÝÊаËУÁª¿¼¸ßÈý£¨ÉÏ£©ÆÚÄ©ÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Éèn¡ÊN*£¬²»µÈʽ×éËù±íʾµÄƽÃæÇøÓòΪDn£¬°ÑDnÄÚµÄÕûµã£¨ºá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã£©°´Æäµ½Ô­µãµÄ¾àÀë´Ó½üµ½Ô¶ÅÅÁгɵãÁУº£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡­£¬£¨xn£¬yn£©
£¨1£©Çó£¨xn£¬yn£©£»
£¨2£©ÉèÊýÁÐ{an}Âú×㣬ÇóÖ¤£ºn¡Ý2ʱ£¬£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬±È½ÏÓë4µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸