精英家教网 > 高中数学 > 题目详情

经过椭圆+=1的右焦点任意作弦AB,过A作直线x=4的垂线AM,垂足为M,则直线BM必经过定点(  )

A.(2,0)             B.

C.(3,0)             D.

B.依题意,选取过椭圆+=1的右焦点且垂直于x轴的弦AB,令A,B的坐标分别为,,所以过点A作直线x=4的垂线,垂足为M,所以直线BM的方程为y=x-,由于所给选项均为x轴上的点,而直线BM与x轴的交点为,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,设抛物线c1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2,以F1、F2为焦点,离心率e=
12
的椭圆c2与抛物线c1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆的方程;
(2)在(1)的条件下,直线l经过椭圆c2的右焦点F2,与抛物线c1交于A1、A2,如果以线段A1A2为直径作圆,试判断点P与圆的位置关系,并说明理由;
(3)是否存在实数m,使得△PF1F2的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2,以F1、F2为焦点、离心率e=
12
的椭圆C2与抛物线C1的一个交点为P.
(1)当m=1时求椭圆的方程;
(2)在(1)的条件下,直线L经过椭圆C2的右焦点F2与抛物线L1交于A1,A2两点.如果弦长|A1A2|等于△PF1F2的周长,求直线L的斜率;
(3)是否存在实数m,使△PF1F2的边长是连续的自然数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1、F2为焦点,离心率e=
12
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆的方程及其右准线的方程;
(2)是否存在实数m,使得△PF1F2的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由;
(3)在(1)的条件下,直线l经过椭圆C2的右焦点F2,与抛物线C1交于A1、A2,如果以线段A1A2为直径作圆,试判断点P与圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜率为2的直线经过椭圆=1的右焦点F1,与椭圆相交于A、B两点,求弦AB的长.

查看答案和解析>>

同步练习册答案