精英家教网 > 高中数学 > 题目详情

设f(x)是定义在正整数集上的函数,且f(x)满足:“f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”.那么,下列命题总成立的是


  1. A.
    若f(3)≥9成立,则当k≥1,均有f(k)≥k2成立
  2. B.
    若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立
  3. C.
    若f(7)<49成立,则当k≥8,均有f(k)≥k2成立
  4. D.
    若f(4)=25成立,则当k≥4,均有f(k)≥k2成立
D
分析:由题意对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立的含义是对前一个数成立,则能推出后一个数成立,反之不成立.
解答:对A,当k=1或2时,不一定有f(k)≥k2成立;
对B,只能得出:对于任意的k≥5,均有f(k)≥k2成立,不能得出:任意的k≤5,均有f(k)≤k2成立;
对于C,若f(7)<49成立不能推出任何结论;
对D,∵f(4)=25≥16,∴对于任意的k≥4,均有f(k)≥k2成立.
故选D
点评:本题主要考查了命题的真假判断与应用,本题体现的是一种递推关系,同时考查了推理能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”.那么,下列命题总成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”,那么,下列命题总成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在正整数集上的函数,且f(x)满足:“f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”.那么,下列命题总成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)>k2成立时,总可推出f(k+1)>(k+1)2成立”. 那么,下列命题总成立的是(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省广州市七区联考高二(下)期末数学试卷(理科)(解析版) 题型:选择题

设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”.那么,下列命题总成立的是( )
A.若f(1)<1成立,则f(10)<100成立
B.若f(2)<4成立,则f(1)≥1成立
C.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立
D.若f(4)≥25成立,则当k≥4时,均有f(k)≥k2成立

查看答案和解析>>

同步练习册答案