精英家教网 > 高中数学 > 题目详情
16.如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD=1,E为棱AD的中点,异面直线PA与CD所成的角为90°.
(Ⅰ)证明:CD⊥平面PAD;
(Ⅱ)若二面角P-CD-A的大小为45°,求几何体C-PBE的体积.

分析 (Ⅰ)由已知异面直线PA与CD所成的角为90°,知PA⊥CD,又∠ADC=90°,直接利用线面垂直的判定可得CD⊥平面PAD;
(Ⅱ)由(Ⅰ)知∠PDA为二面角P-CD-A的平面角为45°,再由线面垂直的判定证明PA⊥平面ABCD,得PA⊥AD.证明四边形BCDE为正方形,然后利用等积法求得几何体C-PBE的体积.

解答 (Ⅰ)证明:由已知异面直线PA与CD所成的角为90°,知PA⊥CD,
又∠ADC=90°,PA∩AD=A,
∴CD⊥平面PAD;
(Ⅱ)解:由(Ⅰ)知,CD⊥平面PAD,
∴PD⊥DC,又AD⊥DC,
∴∠PDA为二面角P-CD-A的平面角为45°,
∵$\frac{1}{2}$AD=1,∴AD=2,
由PA⊥CD,∠PAB=90°,且直线AB与CD相交,
可得PA⊥平面ABCD,得PA⊥AD.
在Rt△PAD中,可得PA=2,
又AD∥BC,AD⊥DC,BC=CD,
∴四边形BCDE为正方形,可得${S}_{△BCE}=\frac{1}{2}$.
∴${V}_{C-PBE}={V}_{P-BCE}=\frac{1}{3}×\frac{1}{2}×2=\frac{1}{3}$.

点评 本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.为了得到函数y=2+sin(2x+$\frac{π}{6}$)的图象,只须将函数y=sin2x的图象平移向量(  )
A.($\frac{π}{6}$,-2)B.($\frac{π}{12}$,2)C.($-\frac{π}{12}$,-2)D.($-\frac{π}{12}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=2ln(3x)+8x,则$\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{△x}$的值为(  )
A.10B.-10C.-20D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过圆x2+y2=4外一点M(4,-1)引圆的两条切线,则经过两切点的直线方程是(  )
A.4x-y-4=0B.4x+y-4=0C.4x+y+4=0D.4x-y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=ln(2sinx-1)的定义域为{x|$\frac{π}{6}$+2kπ<x<$\frac{5π}{6}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆的一般方程为x2+y2-2x+4y+3=0,则圆心C的坐标与半径分别是(  )
A.(1,-2),r=2B.(1,-2),$r=\sqrt{2}$C.(-1,2),r=2D.(-1,2),$r=\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若A(-2,3),B(3,-2),C(1,m)三点共线,则m的值为(  )
A.$\frac{1}{2}$B.-1C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的函数f(x)对任意x1,x2(x1≠x2)都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$,函数f(x-1)的图象关于(1,0)成中心对称,如果实数m,n满足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2+n2的取值范围是(  )
A.(9,49)B.(13,49)C.(9,25)D.(3,7)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)的渐近线方程为3x+2y=0,则a的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案