精英家教网 > 高中数学 > 题目详情
已知M是正四面体ABCD棱AB的中点,N,E分别是棱CD,BD上的任意点,则下列结论正确的个数有(  )
(1)MN⊥AB;              (2)若N为中点,则MN与AD所成角为45°;
(3)平面CDM⊥平面ABN;  (4)若E为中点,则几何体E-BMN的体积为定值.
分析:利用线线垂直,线面垂直、面面垂直的位置关系的判定,异面直线夹角的定义、锥体体积公式逐一判断正误,得出正确的个数.
解答:解:①如图①

连接MC,MD,由于M是正四面体ABCD棱AB的中点,所以MC⊥AB,MD⊥AB,AB⊥面MCD,MN?面MCD,
∴MN⊥AB. (1)正确.
②如图 ②

设H为AC中点,
连接HN,MH,则HN∥AD,MH∥BC.
∠HNM即为MN与AD所成角,由(1)已证AB⊥面MCD,
得出AB⊥CD,同理得出AD⊥BC,
∴NH⊥MH,△NHM为等腰直角三角形,∠HNM=45°,
∴MN与AD所成角为45°.  (2)正确.
③由(1)已证AB⊥面MCD,AB?面ABN,∴平面CDM⊥平面ABN.  (3)正确.
④V E-BMN=V M-BEN,M到底面BCD的距离为定值,三角形MEN的面积随N的变化而变化,几何体E-BMN的体积不为定值.  (4)错误.
下列结论正确的个数有3个.
故选C.
点评:本题研究了正四面体 的部分性质,考查线线垂直,线面垂直、面面垂直的位置关系的判定,异面直线夹角的定义、锥体体积公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知M是正四面体ABCD棱AB的中点,N是棱CD的中点,则下列结论中,正确的个数有(  )
(1)MN⊥AB;            
(2)VA-MCD=VB-MCD;     
(3)平面CDM⊥平面ABN; 
(4)CM与AN是相交直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M是正四面体ABCD棱AB的中点,N是棱CD上异于端点C,D的任一点,则下列结论中,正确的个数有(  )
(1)MN⊥AB;               (2)若N为中点,则MN与AD所成角为45°;
(3)平面CDM⊥平面ABN;      (4)存在点N,使得过MN的平面与AC垂直.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省哈尔滨六中高二(上)期中数学试卷(理科)(解析版) 题型:选择题

已知M是正四面体ABCD棱AB的中点,N是棱CD的中点,则下列结论中,正确的个数有( )
(1)MN⊥AB;            
(2)VA-MCD=VB-MCD;     
(3)平面CDM⊥平面ABN; 
(4)CM与AN是相交直线.
A.1 个
B.2 个
C.3 个
D.4个

查看答案和解析>>

科目:高中数学 来源:2011年黑龙江省哈尔滨六中高考数学三模试卷(文科)(解析版) 题型:选择题

已知M是正四面体ABCD棱AB的中点,N,E分别是棱CD,BD上的任意点,则下列结论正确的个数有( )
(1)MN⊥AB;              (2)若N为中点,则MN与AD所成角为45°;
(3)平面CDM⊥平面ABN;  (4)若E为中点,则几何体E-BMN的体积为定值.
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案