精英家教网 > 高中数学 > 题目详情
已知Sn为等差数列{an}的前n项和,Sn=12n-n2
(1)求|a1|+|a2|+|a3|;
(2)求|a1|+|a2|+|a3|+…+|a10|;
(3)求|a1|+|a2|+|a3|+…+|an|.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出an=13-2n.当1≤n≤6时,an>0;当n≥7时,an<0.由此得到|a1|+|a2|+|a3|=S3
(2)由(1)得|a1|+|a2|+|a3|+…+|a10|=2S6-S10,由此能求出结果.
(3)由(1)知当1≤n≤6时,|a1|+|a2|+|a3|+…+|an|=Sn;当n≥7时,|a1|+|a2|+|a3|+…+|an|=2S6-Sn
解答: 解:(1)∵Sn=12n-n2.∴当n=1时,a1=S1=12-1=11,
当n≥2时,an=Sn-Sn-1=(12n-n2)-12(n-1)+(n-1)2=13-2n.
当n=1时,13-2×1=11=a1,∴an=13-2n.
由an=13-2n≥0,得n
13
2

∴当1≤n≤6时,an>0;当n≥7时,an<0.
∴|a1|+|a2|+|a3|=S3=12×3-32=27.
(2)|a1|+|a2|+|a3|+…+|a10|
=2S6-S10
=2(12×6-62)-(12×10-102
=52.
(3)当1≤n≤6时,
|a1|+|a2|+|a3|+…+|an|=Sn=12n-n2
当n≥7时,
|a1|+|a2|+|a3|+…+|an|=2S6-Sn
=n2-12n+72.
∴|a1|+|a2|+|a3|+…+|an|=
12n-n2,1≤n≤6
n2-12n+72,n≥7
点评:本题考查数列的各项的绝对值的和的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

棱长为1的正方体ABCD-A1B1C1D1中,点M,N分别在线段AB1,BC1上,且
AM=BN,给出以下结论:
①AA1⊥MN;  
②四面体B1D1CA的体积为
1
3

③异面直线AB1,BC1所成的角为60°;
④A1C⊥AB1,A1C⊥BC1
其中正确的结论的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=
3
,延长CE交AB于点F,证明DC∥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b∈R,若M=
a0
-1b
所定义的线性变换把直线l:2x+y-1=0变换成另一直线l′:x+y-3=0,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

高三某班有两个数学课处兴趣小组,第一组有2名男生,2名女生,第二组有3名男生,2名女生,现在班主任老师要从第一组选出1人,从第二组选出2人,请他们在班会上和全班同学分享学习心得.
(1)求选出的3人均是男生的概率;
(2)求选出的3人中有男生也有女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:||2x+1|-|2x-1||≤|﹙2x+1﹚-﹙2x-1﹚|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-3x2+3,定义数列{an}满足a1=3,且an>0,an+1=
-3f(an)+9

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
1
an
,数列{bn}的前n项和为Sn,求证:Sn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

2013年6月“神州十号”发射成功,全国瞩目,这次发射过程共有三个值得关注的环节,即发射、授课、返回.据统计,由于时间关系,某班同学收看这三个环节的直播的概率分别为
1
3
4
5
1
2
,并且各个环节直播收看互不影响.
(1)若从该班随机选取4名同学,求这4名同学至少有2名同学收看了发射直播又收看了返回直播的概率;
(2)若用ε表示一位同学收看环节数,求ε的分布列与期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(an+1,1),
b
=(1,-an),
a
b
=2,设数列{an}的前n项和为Sn,且S4、S6、S9成等比数列.
(Ⅰ)求an与Sn
(Ⅱ)若bn=
Sn+156
an+1
,求数列{bn}中的最小项及取得最小项时n的值.

查看答案和解析>>

同步练习册答案