科目:高中数学 来源: 题型:
已知函数f(x)=lnx-
ax2-2x,
(1)若函数f(x)在x=2处取得极值,求实数a的值.
(2)若函数f(x)在定义域内单调递增,求实数a的取值范围.
(3)当a=-
时,关于x的方程f(x)=-
x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
设f(x)是定义在R上的增函数,且对于任意的x都有f(-x)+f(x)=0恒成立.如果实数m、n满足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2+n2的取值范围是___________.
|
查看答案和解析>>
科目:高中数学 来源: 题型:
设
,
. 随机变量
取值
、
、
、
、
的概率均为0.2,随机变量
取值
、
、
、
、
的概率也为0.2.
若记
、
分别为
、
的方差,则 ( )
A.
>
. B.
=
. C.
<
.
D.
与
的大小关系与
、
、
、
的取值有关.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com