精英家教网 > 高中数学 > 题目详情
设a1,a2,a3均为正数,且a1+a2+a3=m,求证
1
a1
+
1
a2
+
1
a3
9
m
.
分析:根据基本不等式的性质可分别求得a1+a2+a3
1
a1
+
1
a2
+
1
a3
的最小值,两式相乘即可求得(
1
a1
+
1
a2
+
1
a3
)•m
的最小值,整理后原式得证.
解答:证明:∵(
1
a1
+
1
a2
+
1
a3
)•m
=(a1+a2+a3)(
1
a1
+
1
a2
+
1
a3
)
≥3
3a1a2a3
•3
3
1
a1
1
a2
1
a3
=9

当且仅当a1=a2=a3=
m
3
时等号成立.
又∵m=a1+a2+a3>0,
1
a1
+
1
a2
+
1
a3
9
m
.
点评:本题主要考查了基本不等式的应用.解题的时候要特别注意等号成立的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
(I)已知|x1-2|<1,|x2-2|<1.求证:2<x1-x2<6,|x1-x2|<2.
(II)设a1,a2,a3均为正数,且a1+a2+a3=k,求证:
1
a1
+
1
a2
+
1
a3
9
k

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:不等式选讲
(Ⅰ) 设a1,a2,a3均为正数,且a1+a2+a3=m,求证
1
a1
+
1
a2
+
1
a3
9
m

(Ⅱ) 已知a,b都是正数,x,y∈R,且a+b=1,求证:ax2+by2≥(ax+by)2

查看答案和解析>>

科目:高中数学 来源: 题型:

选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.
B.(矩阵与变换)
已知矩阵
12
2a
的属于特征值b的一个特征向量为
1
1
,求实数a、b的值.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,已知点A(1,-2)在曲线
x=2pt2
y=2pt
(t为参数,p为正常数),求p的值.
D.(不等式选讲)
设a1,a2,a3均为正数,且a1+a2+a3=1,求证:
1
a1
+
1
a2
+
1
a3
≥9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城二模)选修4-5:不等式选讲:
设a1,a2,a3均为正数,且a1+a2+a3=m.求证:
1
a1+a2
+
1
a2+a3
+
1
a3+a1
9
2m

查看答案和解析>>

同步练习册答案