精英家教网 > 高中数学 > 题目详情

已知三次函数f(x)=ax3-x2+x在(0,+∞)存在极大值点,则a的范围是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:先求出f′(x)=3ax2-2x+1,由题意得到f′(x)=0有两个不同的正实数根或一正一负根,列出等价条件△>0且a≠0,再进行求解.
解答:由题意知,f′(x)=3ax2-2x+1,
∵三次函数f(x)=ax3-x2+x在(0,+∞)存在极大值点,
∴f′(x)=3ax2-2x+1=0有两个不同的正实数根或一正一负根,
①当a>0时,此时3ax2-2x+1=0有两个不同的正实数根,
,即0<a<
②当a<0时,此时3ax2-2x+1=0有一正一负根,
只须△>0,即4-12a>0,?a
∴a<0
综上,则a的范围是
故选D.
点评:本题考查了导数与函数的单调性的关系,本题的易错点是容易忽略二次项的系数不为零.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三次函数f(x)=ax3+bx2+cx(a,b,c∈R).
(Ⅰ)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程为y+2=0,求函数f(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,若对于区间[-3,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤t,求实数t的最小值;
(Ⅲ)当-1≤x≤1时,|f′(x)|≤1,试求a的最大值,并求a取得最大值时f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

19、已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.
(I)求函数y=f(x)的表达式;
(II)求函数y=f(x)的单调区间和极值;
(Ⅲ)若函数g(x)=f(x-m)+4m(m>0)在区间[m-3,n]上的值域为[-4,16],试求m、n应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=ax3+bx2+cx+d,(a,b,c,d∈R),命题p:y=f(x)是R上的单调函数;命题q:y=f(x)的图象与x轴恰有一个交点.则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.
(1)求函数f(x)的表达式; 
(2)求函数的单调区间和极值;
(3)求函数在区间[-2,5]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则
f′(-3)f′(1)
=
 

查看答案和解析>>

同步练习册答案