精英家教网 > 高中数学 > 题目详情
已知A,B,C三点共线,O为直径AB外的任一点,满足
OC
=x
OA
+y
OB
,则x2+y的最小值等于(  )
A、
5
4
B、1
C、
3
4
D、
1
3
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:根据三点关系的等价条件可得x+y=1,利用消元法,结合一元二次函数的性质即可得到结论.
解答: 解:∵A,B,C三点共线,且满足
OC
=x
OA
+y
OB

∴得x+y=1,
x2+y=x2+1-x=(x-
1
2
)2+
3
4

故当x=
1
2
时,(x2+y)min=
3
4

故选:C
点评:本题主要考查平面向量的应用,根据三点共线得到x+y=1是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合A={x|3≤x<7},B={y|2<y<5},则(∁RA)∪(∁RB)=(  )
A、{x|3≤x<5}
B、{x|x<3,或x≥7}
C、{x|x<3,或x≥5}
D、{x|x≤2,或x>7}

查看答案和解析>>

科目:高中数学 来源: 题型:

在海岛上有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距80
2
海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ(其中sinθ=
26
26
,θ为锐角)且与A点相距20
13
海里的位置C.
(1)求该船的行驶速度(单位:海里/小时);
(2)若该船始终不改变航行的方向,经过多长时间后,该船从点C到达海岛正东方向的D点处.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(  )
A、(0,1)
B、(0,
1
2
C、(-1,0)
D、(-
2
2
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin4x+cos4x的周期是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①设a,b∈R,a2+2b2=6,则a+b的最小值是-3;
②已知x3+sinx-2a=0,4y3+sinycosy+a=0,则cos(x+2y)=0;
③若(z-x)2-4(x-y)(y-z)=0,则x,y,z成等差数列;
④已知函数f(x)满足f(1)=
1
3
,3f(x)f(y)=f(x+y)+f(x-y),(x,y∈R)则f(2013)=3;
其中正确的命题是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:等差数列{an}的前n项和为Sn,若公差d=-2,S20=0.
(Ⅰ)求通项an及Sn
(Ⅱ)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D、E分别是BC、AP的中点.求异面直线AC与ED所成的角的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)是R上的奇函数,且当x<0时,g(x)=-ln(1-x),设函数f(x)=
x3
 ,(x≤0)
g(x)
 ,(x>0)
,若f(x2-x)<f(6-2x),则实数x的取值范围是(  )
A、(-∞,-3)∪(2,+∞)
B、(-∞,-2)∪(3,+∞)
C、(-2,3)
D、(-3,2)

查看答案和解析>>

同步练习册答案