精英家教网 > 高中数学 > 题目详情
若数列{an}是等比数列,an>0,公比q≠1,已知lga2是lga1和1+lga4的等差中项,且a1a2a3=1.
(1)求{an}的通项公式;
(2)设bn=
1n(3-lgan)
(n∈N*),Tn=b1+b2+…+bn,求Tn
分析:(1)依题意,可求得等比数列{an}的公比q=
1
10
,首项a1=10,从而可求得{an}的通项公式;
(2)由(1)知,an=102-n,于是由裂项法可知,bn=
1
n
-
1
n+1
,从而可求Tn=b1+b2+…+bn
解答:解:(1)由题知2lga2=lga1+(1+lga4),即:lga22=lg10a1a4
a22=10a1a4=10a12q3
∵a1>0,q2>0,
∴q=
1
10
.(3分)
又a1a2a3=1,
a13q3=a13(
1
10
)
3
=1,
a13=1000,
∴a1=10,(6分)
∴an=10×(
1
10
)
n-1
=102-n,(8分)
(2)bn=
1
n(3-lgan)
=
1
n(n+1)
=
1
n
-
1
n+1
(10分)
∴Tn=b1+b2+…+bn
=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1
(12分)
点评:本题考查数列的求和,着重考查等差数列与等比数列的通项公式与裂项法求和,考查对数的运算性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网给出下列四个命题:
①已知函数y=2sin(x+φ)(0<φ<π)的图象如图所示,则?=
π
6
5
6
π

②已知O、A、B、C是平面内不同的四点,且
OA
OB
OC
,则α+β=1是A、B、C三点共线的充要条件;
③若数列an恒满足
a
2
n+1
a
2
n
=p
(p为正常数,n∈N*),则称数列an是“等方比数列”.根据此定义可以断定:若数列an是“等方比数列”,则它一定是等比数列;
④求解关于变量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到该方程中变量n的所有取值的表达式为n=
1
12
(4k+8)

(k∈N*).
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列一些说法:
(1)已知△ABC中,acosB=bcosA,则△ABC为等腰或直角三角形.
(2)已知△ABC中,acosA=bcosB,则△ABC为等腰或直角三角形.
(3)已知数列{an}满足
a
2
n+1
a
2
n
=p(p为正常数,n∈N*),则称{an}为“等方比数列”.若数列{an}是等方比数列则数列{an}必是等比数列.
(4)等比数列{an}的前3项的和等于首项的3倍,则该等比数列的公比为-2.
其中正确的说法的序号依次是
(2)
(2)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年安徽省六安一中高三(下)第七次月考数学试卷(理科)(解析版) 题型:填空题

给出下列四个命题:
①已知函数y=2sin(x+φ)(0<φ<π)的图象如图所示,则
②已知O、A、B、C是平面内不同的四点,且,则α+β=1是A、B、C三点共线的充要条件;
③若数列an恒满足(p为正常数,n∈N*),则称数列an是“等方比数列”.根据此定义可以断定:若数列an是“等方比数列”,则它一定是等比数列;
④求解关于变量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到该方程中变量n的所有取值的表达式为
(k∈N*).
其中正确命题的序号是   

查看答案和解析>>

科目:高中数学 来源:2012年人教B版高中数学必修5 2.3等比数列练习卷(解析版) 题型:选择题

已知数列{an}的前n项和为Sn=b×2n+a(a0,b0),若数列{an}是等比数例,则a、b应满足的条件为(   )

(A)a-b=0   (B)a-b0   (C)a+b=0   (D)a+b0

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省唐山市高一(下)期中数学试卷(解析版) 题型:填空题

给出下列一些说法:
(1)已知△ABC中,acosB=bcosA,则△ABC为等腰或直角三角形.
(2)已知△ABC中,acosA=bcosB,则△ABC为等腰或直角三角形.
(3)已知数列{an}满足=p(p为正常数,n∈N*),则称{an}为“等方比数列”.若数列{an}是等方比数列则数列{an}必是等比数列.
(4)等比数列{an}的前3项的和等于首项的3倍,则该等比数列的公比为-2.
其中正确的说法的序号依次是   

查看答案和解析>>

同步练习册答案