精英家教网 > 高中数学 > 题目详情
已知函数f(x)=[ax2-(3+2a)x+a]•ex+1,a≠0.
(1)若x=-1是函数f(x)的极大值点,求a的取值范围.
(2)若不等式f′(x)>(x2+x-a)•ex+1对任意a∈(0,+∞)都成立,求实数x的取值范围.
(3)记函数g(x)=f(x)+(2a+6)•ex+1,若g(x)在区间[2,4]上不单调,求实数a的取值范围.
分析:(1)先求导函数,利用x=-1是函数f(x)的极大值点,可得
a<0
a+3
a
<-1
a>0
a+3
a
>-1
,从而求出参数的范围;(2)问题等价于(x2+1)a-x2-4x-3>0对任意a∈(0,+∞)都成立,从而解不等式可得;(3)g(x)在区间[2,4]上不单调?ax2-3x+a+3=0在x∈(2,4)上有解且△≠0,从而可解.
解答:解:(1)
f′(x)=(ax2-3x-a-3)ex+1
=[ax-(a+3)][x+1]ex+1=0

x1=-1,x2=
a+3
a

若x=-1是函数f(x)的极大值点,∴
a<0
a+3
a
<-1
a>0
a+3
a
>-1

解得,-
3
2
<a<0
或a>0(6分)
(2)f′(x)>(x2+x-a)•ex+1?(x2+1)a-x2-4x-3>0对任意a∈(0,+∞)都成立,
∴-x2-4x-3≥0?-3≤x≤-1(10分)
(3)g(x)=f(x)+(2a+6)•ex+1=[ax2-(3+2a)x+3a+6]•ex+1
g′(x)=(ax2-3x+a+3)•ex+1
g(x)在区间[2,4]上不单调?ax2-3x+a+3=0在x∈(2,4)上有解且△≠0
变量分离得,a=
3x-3
x2+1
令t(x)=
3x-3
x2+1
(x∈(2,4))

求得t(x)的值域为(
9
17
3(
2
-1)
2
)

9
17
<a<
3(
2
-1)
2
(15分)
点评:本题主要考查利用导数研究函数的极值,解决函数在区间上的不单调问题,通常转化为函数在区间上有解且△≠0
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案