精英家教网 > 高中数学 > 题目详情

有下面四个判断:

①命题“设a、b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题;

②若“p或q”为真命题,则p、q均为真命题;

③命题“∀a、b∈R,a2+b2≥2(a﹣b﹣1)”的否定是“∃a、b∈R,a2+b2≤2(a﹣b﹣1)”;

④若函数的图象关于原点对称,则a=﹣1.其中正确的有  (只填序号)

解答:

解:①当a=3且b=3时,a+b=6,所以命题正确,根据逆否命题和原命题的等价性可知,若a+b≠6,则a≠3或b≠3”为真命题,∴①错误.

②若“p或q”为真命题,则p、q至少有一个为真命题,∴②错误.

③根据全称命题的否定是特称命题,∴命题“∀a、b∈R,a2+b2≥2(a﹣b﹣1)”的否定是“∃a、b∈R,a2+b2<2(a﹣b﹣1)”,∴③错误.

④若函数的图象关于原点对称,则f(0)=ln(a+2)=0,解得a+2=1,即a=﹣1.∴④正确.

故答案为:④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下面四个判断:
①命题“设a、b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题;
②若“p或q”为真命题,则p、q均为真命题;
③命题“?a、b∈R,a2+b2≥2(a-b-1)”的否定是“?a、b∈R,a2+b2≤2(a-b-1)”;
④若函数f(x)=ln(a+
2x+1
)
的图象关于原点对称,则a=-1.
其中正确的有
(只填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

有下面四个判断,其中正确的个数是(  )
①命题:“设a、b∈R,若a+b≠6,则a≠3或b≠3”是一个真命题
②若“p或q”为真命题,则p、q均为真命题
③命题“?a、b∈R,a2+b2≥2(a-b-1)”的否定是:“?a、b∈R,a2+b2≤2(a-b-1)”

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)有下面四个判断:
①命题:“设a、b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题
②若“p或q”为真命题,则p、q均为真命题
③命题“?a、b∈R,a2+b2≥2(a-b-1)”的否定是:“?a、b∈R,a2+b2≤2(a-b-1)”
④若函数f(x)=ln(a+
2
x+1
)
的图象关于原点对称,则a=3
其中正确的个数共有(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市十一县高三上学期期中联考文科数学试卷(解析版) 题型:选择题

有下面四个判断:

①命题:“设,若,则”是一个假命题

②若“pq”为真命题,则pq均为真命题

③命题“”的否定是:

④若函数的图象关于原点对称,则

其中正确的个数共有(   )

A. 0个             B. 1个             C.2个              D. 3个

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年江西省高一下学期第一次月考数学试卷 题型:填空题

关于数列有下面四个判断:

  ①若a、b、c、d成等比数列,则也成等比数列;

  ②若数列既是等差数列,也是等比数列,则为常数列;

  ③若数列的前n项和为,且,(a),则为等差或等比数列;

  ④数列为等差数列,且公差不为零,则数列中不含有

  其中正确判断序号是  _____________  ___

 

查看答案和解析>>

同步练习册答案