设x∈N+时f(x)∈N+,对任何n∈N+有f(n+1)>f(n)且f(f(n))=3n,
(1)求f(1);
(2)求f(6)+f(7);
(3)求f(2012).
【答案】分析:(1)由f(f(n))=3n,可得f(1)≠1,由f(x)∈N*,且f(n+1)>f(n),可得f(1)≥2,进而可得f(2)≤f(f(1))=3,f(2)>f(1)≥2,进而得到答案.
(2)由(1)中结论,可得f(3)=f(f(2))=6,f(6)=f(f(3))=9,结合f(x)∈N*,且f(n+1)>f(n),可得f(4)=7,进而f(7)=f(f(4))=12,代入可得答案.
(3)由(1)(2)类推可得:f(9)=f(f(6))=18,f(18)=f(f(9))=27,且f(k)=k+9…9≤k≤18,f(27)=f(f(18))=54,f(54)=f(f(27))=81,且f(k)=k+27…27≤k≤54…f(1458)=f(f(729))=2187,且f(k)=k+729…729≤k≤1458,且 f(2012-729)=2012,代入可得答案.
解答:解:(1)∵f(f(n))=3n,
∴f(f(1))=3,
若f(1)=1,则f(f(1))=f(1)=3,与f(1)=1矛盾
故f(1)≠1
∵f(x)∈N*
∴f(1)≥2
∵f(x)在大于0上是单调增函数
∴f(2)≤f(f(1))=3
又由f(2)>f(1)≥2,
可得2≤f(1)<f(2)≤3
故f(1)=2,f(2)=3
(2)因为 f(3)=f(f(2))=6,
f(6)=f(f(3))=9,
且f(3)<f(4)<f(5)<f(6)
所以f(4)=7,f(5)=8,
所以f(4)+f(5)=7+8=15
(3)f(9)=f(f(6))=18
f(18)=f(f(9))=27---且f(k)=k+9…9≤k≤18
f(27)=f(f(18))=54
f(54)=f(f(27))=81---且f(k)=k+27…27≤k≤54
f(81)=f(f(54))=162
f(162)=f(f(81))=243---且f(k)=k+81…81≤k≤162
f(243)=f(f(162))=486
f(486)=f(f(243))=729---且f(k)=k+243…243≤k≤486
f(729)=f(f(486))=1458
f(1458)=f(f(729))=2187---且f(k)=k+729…729≤k≤1458
所以 f(2012-729)=2012
所以f(2012)=f(f(2012-729))=3(2012-729)=3849
点评:本题考查的知识点是抽象函数的函数值,正确理解f(x)∈N*,且f(n+1)>f(n)的含义,并由此类推出各段函数值是解答的关键.