精英家教网 > 高中数学 > 题目详情
若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的两个焦点为F1,F2,P为双曲线上一点,且|PF1|=3|PF2|,则该双曲线离心率的取值范围是
 
分析:先根据双曲线定义可知|PF1|-|PF2|=2a进而根据|PF1|=3|PF2|,求得a=|PF2|,同时利用三角形中两边之和大于第三边的性质,推断出,|F1F2|<|PF1|+|PF2|,进而求得a和c的不等式关系,分析当p为双曲线顶点时,
c
a
=2且双曲线离心率大于1,可得最后答案.
解答:解根据双曲线定义可知|PF1|-|PF2|=2a,即3|PF2|-|PF2|=2a.
∴a=|PF2|,|PF1|=3a
在△PF1F2中,|F1F2|<|PF1|+|PF2|,
2c<4|PF2|,c<2|PF2|=2a,
c
a
<2,
当p为双曲线顶点时,
c
a
=2
又∵双曲线e>1,
∴1<e≤2
故答案为:1<e≤2.
点评:本题主要考查了双曲线的简单性质,三角形边与边之间的关系.解题的时候一定要注意点P在椭圆顶点位置时的情况,以免遗漏答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
b2
=1
的渐近线方程为y=±
3
2
x
,则其离心率为(  )
A、
13
2
B、
13
3
C、
2
13
3
13
D、
13
2
13
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线方程为y=±
3
2
x,则双曲线的离心率为(  )
A、
7
2
B、
3
2
C、
1
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
5
,则双曲线的一条渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
8
=1
的一个焦点为(4,0),则双曲线的渐近线方程为
y=±x
y=±x

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线与抛物线y=x2+2相切,则此双曲线的渐近线方程为(  )

查看答案和解析>>

同步练习册答案