精英家教网 > 高中数学 > 题目详情
(2012•东莞二模)已知函数f(x)=x2+x+c,若f(0)>0,f(p)<0,则必有(  )
分析:该函数图象是开口向上的抛物线,对称轴为x=-
1
2
.f(0)=c>0,图象关于x=-
1
2
对称,所以f(-1)=f(0)>0.由此能求出f(p+1)的符号.
解答:解:该函数图象是开口向上的抛物线,对称轴为x=-
1
2

f(0)=c>0,即抛物线在y轴上的截距大于0.
因为图象关于x=-
1
2
对称,所以f(-1)=f(0)>0.
设f(x)=0的两根为x1、x2,令x1<x2,则-1<x1<x2<0,
根据图象,x1<p<x2,故p+1>0,f(p+1)>0.
故选A.
点评:本题考查二次函数的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东莞二模)附加题:设函数f(x)=
1
4
x2+
1
2
x-
3
4
,对于正整数列{an},其前n项和为Sn,且Sn=f(an),n∈N*
(1)求数列{an}的通项公式;
(2)是否存在等比数列{bn},使得a1b1+a2b2+…+anbn=2n+1(2n-1)+2对一切正整数n都成立?若存在,请求出数列{bn}的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东莞二模)甲、乙两名运动员的5次测试成绩如图所示,设s1,s2分别表示甲、乙两名运动员测试成绩的标准差,
.
x1
.
x2
分别表示甲、乙两名运动员测试成绩的平均数,则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东莞二模)对于函数
①f(x)=|x+2|,
②f(x)=(x-2)2
③f(x)=cos(x-2),
判断如下两个命题的真假:命题甲:f(x+2)是偶函数;命题乙:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数;能使命题甲、乙均为真的所有函数的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东莞二模)设D是不等式组
x+2y≤10
2x+y≥3
0≤x≤4
y≥1
表示的平面区域,则D中的点P(x,y)到直线x+y=10距离的最大值是
4
2
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东莞二模)设复数z1=1+i,z2=2+bi,若z1•z2为实数,则b=(  )

查看答案和解析>>

同步练习册答案