精英家教网 > 高中数学 > 题目详情
如图,在正三棱柱(底面为正三角形的直棱柱)ABC-A1B1C1中,F是A1C1的中点.
(1)求证:BC1∥平面AFB1;  
(2)求证:平面AFB1⊥平面ACC1A1
分析:(1)连接A1B与AB1交于点E,连接EF.利用正三棱柱的性质可得四边形ABB1A1是矩形,得A1E=EB.再利用三角形的中位线定理可得EF∥BC1.利用线面平行的判定定理可得BC1∥平面AFB1;  
(2)利用正三棱柱的性质可得AA1⊥底面A1B1C1,因此AA1⊥B1F.利用正三角形的性质及F是边A1C1的中点,可得B1F⊥A1C1.利用线面垂直的判定定理可得B1F⊥平面ACC1A1,再利用面面垂直的判定可得平面AFB1⊥平面ACC1A1
解答:证明:(1)连接A1B与AB1交于点E,连接EF.在正三棱柱ABC-A1B1C1中,可得四边形ABB1A1是矩形,∴A1E=EB.
又A1F=FC1,∴EF∥BC1
∵EF?平面AB1F,BC1?平面AB1F,
∴BC1∥平面AFB1;  
(2)由正三棱柱ABC-A1B1C1中,可得AA1⊥底面A1B1C1,∴AA1⊥B1F.
由F是正△A1B1C1的A1C1的中点,∴B1F⊥A1C1
又A1A∩A1C1=A1,∴B1F⊥平面ACC1A1
∴平面AFB1⊥平面ACC1A1
点评:本题综合考查了正三棱柱的性质、线面垂直与平行的判定与性质、面面垂直的判定定理、三角形的中位线定理、矩形的性质等基础知识与基本技能,考查了空间想象能力、推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知(如图)在正三棱柱(底面正三角形,侧棱垂直于底面)ABC-A1B1C1中,若AB=AA1=4,点D是AA1的中点,点P是BC1中点
(1)证明DP与平面ABC平行.
(2)是否存在平面ABC上经过C点的直线与DB垂直,如果存在请证明;若不存在,请说明理由.
(3)求四棱锥C1-A1B1BD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱(底面为正三角形,侧棱与底面垂直的棱柱)ABC―A1B1C1中,F是A1C1的中点,

 (1)求证:BC1//平面AFB1 w.w.w.k.s.5.u.c.o.m       

(2)求证:平面AFB1⊥平面ACC1A1

(3)作出平面AFB1与平面BCC1B1 的交线

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省广州六中高二(下)期末数学试卷(文科)(解析版) 题型:解答题

已知(如图)在正三棱柱(底面正三角形,侧棱垂直于底面)ABC-A1B1C1中,若AB=AA1=4,点D是AA1的中点,点P是BC1中点
(1)证明DP与平面ABC平行.
(2)是否存在平面ABC上经过C点的直线与DB垂直,如果存在请证明;若不存在,请说明理由.
(3)求四棱锥C1-A1B1BD的体积.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省佛山市顺德区高二(上)期末数学试卷(文科)(解析版) 题型:解答题

如图,在正三棱柱(底面为正三角形的直棱柱)ABC-A1B1C1中,F是A1C1的中点.
(1)求证:BC1∥平面AFB1;  
(2)求证:平面AFB1⊥平面ACC1A1

查看答案和解析>>

同步练习册答案