精英家教网 > 高中数学 > 题目详情
已知向量
OA
=(λcosα,λsinα)
(λ≠0),
OB
=(-sinβ,cosβ)
OC
=(1,0)
,其中O为坐标原点.
(1)若λ=2,α=
π
3
,β∈(0,π),且
OA
BC
,求β;
(7)若|
AB
|≥2|
OB
|
对任意实数α,β都成立,求实数λ的取值范围.
分析:(1)根据给出的λ和α的值,求出向量
OA
,由向量的坐标差求出向量
BC
,最后由向量垂直的坐标表示可解得β的值;
(2)把向量
AB
OB
的模代入后得到关于λ的不等式λ2+1+2λsin(β-α)≥4,把不等式左边看作关于λ的二次函数,分λ>0和λ<0求出函数的最小值,让最小值大于等于4可求解λ的范围.
解答:解:(1)若λ=2,α=
π
3
,则
OA
=(1,
3
)
BC
=(1+sinβ,-cosβ)

OA
BC
,得:1+sinβ-
3
cosβ=0
,即1+2sin(β-
π
3
)=0

所以sin(β-
π
3
)=-
1
2
,因为-
π
3
<β-
π
3
3
,所以β-
π
3
=-
π
6
,所以β=
π
6

(2)若|
AB
|≥2|
OB
|
对任意实数α,β都成立,则(λcosα+sinβ)2+(λsinα-cosβ)2≥4对任意实数α,β都成立,
即λ2+1+2λsin(β-α)≥4对任意实数α,β都成立,
所以,
λ>0
λ2+1-2λ≥4
λ<0
λ2+1+2λ≥4
,解得:λ≥3或λ≤-3,
所以实数λ的取值范围是(-∞,-3]∪[3,+∞).
点评:本题考查了向量的数量积判断两个向量的垂直关系,考查了向量的模,考查计算能力,数学转化思想和函数思想,是中等难度的题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
OA
=(1,-2),
OB
=(-3,4),则
1
2
AB
等于(  )
A、(-2,3)
B、(2,-3)
C、(2,3)
D、(-2,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=(3,-4)
OB
=(6,-3)
OC
=(5-m,-3-m).
(1)若△ABC为直角三角形,且∠A为直角,求实数m的值;
(2)若点A,B,C能构成三角形,求实数m应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

记O为坐标原点,已知向量
OA
=(3,2)
OB
=(0,-2)
,又有点C,满足|
AC
|=
5
2
,则∠ABC的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=(3,1),
OB
=(2,-1),
OC
OA
AC
OB
,则向量
OC
=(  )
A、(1,-3)
B、(-1,3)
C、(6,-2)
D、(-6,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知向量
OA
=(k,12),
OB
=(4,5),
OC
=(-k,10),且A、B、C三点共线,求实数k的值;
(2)已知向量
a
=(1,1),
b
=(2,-3),若k
a
-2
b
a
垂直,求实数k的值.

查看答案和解析>>

同步练习册答案