【题目】已知函数
,证明:
(1)
在区间
存在唯一极大值点;
(2)
有且仅有2个零点.
【答案】(1)证明见解析(2)证明见解析
【解析】
(1)设
,对
求导可知
在
上单调递减,利用零点存在性定理可得
在
上有唯一的零点
,进而求证即可;
(2)利用导函数分别讨论
,
,
的单调性,判断函数图象的性质,进而求证即可.
证明:(1)设
,
当
时,
,
所以
在
上单调递减,
又因为
,
,
所以
在
上有唯一的零点
,
即函数
在
上存在唯一零点,
当
时,
,
在
上单调递增;
当
时,
,
在
上单调递减,
所以
在
上存在唯一的极大值点![]()
(2)①由(1)知:
在
上存在唯一的极大值点
,
所以
,
又因为
,
所以
在
上恰有一个零点,
又因为
,
所以
在
上也恰有一个零点,
②当
时,
,
,
设
,
,
所以
在
上单调递减,所以
,
所以当
时,
恒成立,
所以
在
上没有零点,
③当
时,
,
设
,
,
所以
在
上单调递减,
所以
,
所以当
时,
恒成立,
所以
在
上没有零点,
综上,
有且仅有两个零点.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,过点
的直线与椭圆
交于
两点,延长
交椭圆
于点
,
的周长为8.
![]()
(1)求
的离心率及方程;
(2)试问:是否存在定点
,使得
为定值?若存在,求
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且
,
.
(1)若数列
是等差数列,且
,求实数
的值;
(2)若数列
满足![]()
,且
,求证:数列
是等差数列;
(3)设数列
是等比数列,试探究当正实数
满足什么条件时,数列
具有如下性质
:对于任意的![]()
,都存在
使得
,写出你的探求过程,并求出满足条件的正实数
的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年5月20日以来,广东自西北到东南出现了一次明显降雨.为了对某地的降雨情况进行统计,气象部门对当地20日~28日9天记录了其中100小时的降雨情况,得到每小时降雨情况的频率分布直方图如下:
![]()
若根据往年防汛经验,每小时降雨量在
时,要保持二级警戒,每小时降雨量在
时,要保持一级警戒.
(1)若从记录的这100小时中按照警戒级别采用分层抽样的方法抽取10小时进行深度分析.
①求一级警戒和二级警戒各抽取多少小时;
②若从这10个小时中任选2个小时,则这2个小时中恰好有1小时属于一级警戒的概率.(2)若以每组的中点代表该组数据值,求这100小时内的平均降雨量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )
![]()
![]()
A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件
B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高
C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致
D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左焦点为
,椭圆上动点
到点
的最远距离和最近距离分别为
和
.
(1)求椭圆的方程;
(2)设
分别为椭圆的左、右顶点,过点
且斜率为
的直线
与椭圆交于
、
两点,若
,
为坐标原点,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图,在直三棱柱
中,平面
侧面A1ABB1.
(Ⅰ)求证:
;
(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试判断θ与φ的大小关系,并予以证明.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年全国数学奥赛试行改革:在高二一年中举行5次全区竞赛,学生如果其中2次成绩达全区前20名即可进入省队培训,不用参加其余的竞赛,而每个学生最多也只能参加5次竞赛.规定:若前4次竞赛成绩都没有达全区前20名,则第5次不能参加竞赛.假设某学生每次成绩达全区前20名的概率都是
,每次竞赛成绩达全区前20名与否互相独立.
(1)求该学生进入省队的概率.
(2)如果该学生进入省队或参加完5次竞赛就结束,记该学生参加竞赛的次数为
,求
的分布列及
的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形
所在的平面和平面
互相垂直,等腰梯形
中,
,
,
,
,
,
分别为
,
的中点,
为底面
的重心.
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com