【题目】
如图,在直三棱柱
中,平面
侧面A1ABB1.
(Ⅰ)求证:
;
(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试判断θ与φ的大小关系,并予以证明.![]()
【答案】(Ⅰ)证明见解析.
(Ⅱ)
,证明见解析.
【解析】
(Ⅰ)证明:如右图,过点A在平面A1ABB1内作AD⊥A1B于D,则
![]()
由平面A1BC⊥侧面A1ABB1,且平面A1BC
侧面A1ABB1=A1B,得
AD⊥平面A1BC,又BC
平面A1BC,所以AD⊥BC.
因为三棱柱ABC—A1B1C1是直三棱柱,则AA1⊥底面ABC,所以AA1⊥BC.
又AA1
AD=A,从而BC⊥侧面A1ABB1,
又AB
侧面A1ABB1,故AB⊥BC.
(Ⅱ)解法1:连接CD,则由(Ⅰ)知
是直线AC与平面A1BC所成的角,
是二面角A1—BC—A的平面角,即![]()
于是在
中,
在
中,
,
由
,得
,又
,所以
.
解法2:由(1)知,以点
为坐标原点,以
、
、
所在的直线分
轴、
轴、
轴,建立如图所示的空间直角坐标系,
![]()
设
,
则
,
于是
,
.
设平面的一个法向量为
,则
由
得![]()
可取
,于是
与
的夹角
为锐角,则
与
互为余角.
所以
,
,
所以
.
于是由
,得
,
即
,又
所以
.
第(1)问证明线线垂直,一般先证线面垂直,再由线面垂直得线线垂直;第(2)问若用传统方法一般来说要先作垂直,进而得直角三角形.若用向量方法,关键在求法向量.
科目:高中数学 来源: 题型:
【题目】设椭圆
的左焦点为
,下顶点为
,上顶点为
,
是等边三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线
,过点
且斜率为
的直线与椭圆交于点
异于点
,线段
的垂直平分线与直线
交于点
,与直线
交于点
,若
.
(ⅰ)求
的值;
(ⅱ)已知点
,点
在椭圆上,若四边形
为平行四边形,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
的左、右焦点分别为
,离心率为
,且
在椭圆
上运动,当点
恰好在直线l:
上时,
的面积为
.
(1)求椭圆
的方程;
(2)作与
平行的直线
,与椭圆交于
两点,且线段
的中点为
,若
的斜率分别为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,函数
在
,
处取得极值,其中
.
(1)求实数t的取值范围;
(2)判断
在
上的单调性并证明;
(3)已知
在
上的任意
、
,都有
,令
,若函数
有3个不同的零点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2010-2018年之间,受益于基础设施建设对光纤产品的需求,以及个人计算机及智能手机的下一代规格升级,电动汽车及物联网等新机遇,连接器行业增长呈现加速状态.根据该折线图,下列结论正确的个数为( )
![]()
①每年市场规模量逐年增加;
②增长最快的一年为2013~2014;
③这8年的增长率约为40%;
④2014年至2018年每年的市场规模相对于2010年至2014年每年的市场规模,数据方差更小,变化比较平稳
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人准备投资1200万元办一所中学,为了考虑社会效益和经济效益,对该地区教育市场进行调查,得出一组数据,列表如下(以班级为单位).
市场调查表:
班级学生数 | 配备教师数 | 硬件建设费(万元) | 教师年薪(万元) | |
初中 | 50 | 2.0 | 28 | 1.2 |
高中 | 40 | 2.5 | 58 | 1.6 |
根据物价部门的有关规定:初中是义务教育阶段,收费标准适当控制,预计除书本费、办公费外,初中每人每年可收取600元.高中每人每年可收取1500元.因生源和环境等条件限制,办学规模以20至30个班为宜(含20个班与30个),教师实行聘任制.初、高中教育周期均为三年,设初中编制为
个班,高中编制为
个班,请你合理地安排招生计划,使年利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
1(a>b>0)的左右焦点分别为F1F2,左右顶点分别为AB,上顶点为T,且△TF1F2为等边三角形.
(1)求此椭圆的离心率e;
(2)若直线y=kx+m(k>0)与椭圆交与CD两点(点D在x轴上方),且与线段F1F2及椭圆短轴分别交于点MN(其中MN不重合),且|CM|=|DN|.
①求k的值;
②设ADBC的斜率分别为k1,k2,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com