![]()
(Ⅰ)求A1B与平面ABD所成角的大小(结果用反三角函数值表示);
(Ⅱ)求点A1到平面AED的距离.
18.
解法一:(Ⅰ)连结BG,则BG是BE在面ABD的射影,即∠EBG是A1B与平面ABD所成的角.
![]()
设F为AB中点,连结EF、FC,
∵D、E分别是CC1、A1B的中点,又DC⊥平面ABC,
∴CDEF为矩形.
连结DF,G是△ADB的重心,
∴G∈DF.在直角三角形EFD中,EF2=FG·FD=
FD2,
∵EF=1,∴FD=
.
于是ED=
,EG=
=
.
∵FC=ED=
,
∴AB=2
,A1B=2
,EB=
.
∴sinEBG=
=
.
∴A1B与平面ABD所成的角是arcsin
.
(Ⅱ)连结A1D,有
.
∵ED⊥AB,ED⊥EF,又EF∩AB=F,
∴ED⊥平面A1AB,
设A1到平面AED的距离为h,则S△AED·h=
·ED.
又
=![]()
=
A
,
S△AED=
AE·ED=
.
∴h=
.
即A1到平面AED的距离为
.
解法二:(Ⅰ)连结BG,则BG是BE在面ABD的射影,即∠A1BG是A1B与平面ABD所成的角.如图所示建立坐标系,坐标原点为O.设CA=
则A(
G(
).
![]()
∴
=(
),
=(0,-
∴
·
=-
a2+
=0,
解得a=1.
∴
=(2,-2,2),
=(
,-
,
).
∴cosA1BG=
=
.
A1B与平面ABD所成角是arccos
.
(Ⅱ)由(Ⅰ)有A(2,0,0),A1(2,0,2),E(1,1,1),D(0,0,1).
=(-1,1,1)·(-1,-1,0)=0,![]()
=(0,0,2)·(-1,-1,0)=0,
∴ED⊥平面AA1E,又ED
平面AED,
∴平面AED⊥平面AA1E,
又面AED∩面AA1E=AE.
∴点A1在平面AED的射影K在AE上.
设
=λ
,则
=(-λ,λ,λ-2).
由
=0,即λ+λ+λ-2=0,解得λ=
.
∴
=(-
,
,-
).∴
=
.
故A1到平面AED的距离为
.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com