【题目】设f(x)=|x+1|+|x﹣1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≤log2(a2﹣4a+12)对任意实数a恒成立,求x的取值范围.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知中心在原点,离心率为的椭圆的一个焦点为圆: 的圆心.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上一点,过作两条斜率之积为的直线, ,当直线, 都与圆相切时,求的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国的烟花名目繁多,花色品种繁杂.其中“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂,通过研究,发现该型烟花爆裂时距地面的高度h(单位:米)与时间t(单位:秒)存在函数关系,并得到相关数据如下表:
时间t | 2 | 4 | |
高度h | 10 | 25 | 17 |
( I)根据上表数据,从下列函数中,选取一个函数描述该型烟花爆裂时距地面的高度h与时间t的变化关系:y1=kt+b,y2=at2+bt+c,y3=abt , 确定此函数解析式,并简单说明理由;
( II)利用你选取的函数,判断烟花爆裂的最佳时刻,并求出此时烟花距地面的高度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两家快递公司其“快递小哥”的日工资方案如下:甲公司规定底薪元,每单抽成元;乙公司规定底薪元,每日前单无抽成,超过单的部分每单抽成元
(1)设甲乙快递公司的“快递小哥”一日工资(单位:元)与送货单数的函数关系式为,求;
(2)假设同一公司的“快递小哥”一日送货单数相同,现从两家公司各随机抽取一名“快递小哥”,并记录其天的送货单数,得到如下条形图:
若将频率视为概率,回答下列问题:
①记乙快递公司的“快递小哥”日工资为(单位:元),求的分布列和数学期望;
②小赵拟到两家公司中的一家应聘“快递小哥”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程为,以极点为平面直角坐标系的原点,极轴为的正半轴,建立平面直角坐标系.
(1)若曲线为参数)与曲线相交于两点,求;
(2)若是曲线上的动点,且点的直角坐标为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】五一节期间,某商场为吸引顾客消费推出一项优惠活动,活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券.(假定指针等可能地停在任一位置,指针落在区域的边界时,重新转一次)指针所在的区域及对应的返劵金额见表.
例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(1)已知顾客甲消费后获得n次转动转盘的机会,已知他每转一次转盘指针落在区域边界的概率为p,每次转动转盘的结果相互独立,设ξ为顾客甲转动转盘指针落在区域边界的次数,ξ的数学期望Eξ= ,方差Dξ= ,求n、p的值;
(2)顾客乙消费280元,并按规则参与了活动,他获得返券的金额记为η(元).求随机变量η的分布列和数学期望.
指针位置 | A区域 | B区域 | C区域 |
返券金额(单位:元) | 60 | 30 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有能力互异的3人应聘同一公司,他们按照报名顺序依次接受面试,经理决定“不录用第一个接受面试的人,如果第二个接受面试的人比第一个能力强,就录用第二个人,否则就录用第三个人”,记该公司录用到能力最强的人的概率为p,录用到能力中等的人的概率为q,则(p,q)=( )
A.( , )
B.( , )
C.( , )
D.( , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2﹣a2x+3.
(1)若a=2,求f(x)在[﹣1,2]上的最值;
(2)若f(x)在(﹣ ,1)上是减函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的长轴长为,且椭圆与圆: 的公共弦长为.
(1)求椭圆的方程.
(2)经过原点作直线(不与坐标轴重合)交椭圆于, 两点, 轴于点,点在椭圆上,且,求证: , , 三点共线..
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com