精英家教网 > 高中数学 > 题目详情

【题目】五一节期间,某商场为吸引顾客消费推出一项优惠活动,活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券.(假定指针等可能地停在任一位置,指针落在区域的边界时,重新转一次)指针所在的区域及对应的返劵金额见表.
例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

(1)已知顾客甲消费后获得n次转动转盘的机会,已知他每转一次转盘指针落在区域边界的概率为p,每次转动转盘的结果相互独立,设ξ为顾客甲转动转盘指针落在区域边界的次数,ξ的数学期望Eξ= ,方差Dξ= ,求n、p的值;
(2)顾客乙消费280元,并按规则参与了活动,他获得返券的金额记为η(元).求随机变量η的分布列和数学期望.

指针位置

A区域

B区域

C区域

返券金额(单位:元)

60

30

0

【答案】
(1)解:依题意知,ξ服从二项分布ξ~B(n,p),

联立解得:


(2)解:设指针落在A,B,C区域分别记为事件A,B,C.

由题意得,该顾客可转动转盘2次.

随机变量η的可能值为0,30,60,90,120.

∴随机变量η的分布列为:

P

0

30

60

90

120

η

其数学期望


【解析】(1)依题意知,ξ服从二项分布ξ~B(n,p),由此利用二项分布的性质能求出n、p的值.(2)设指针落在A,B,C区域分别记为事件A,B,C.则 .由题意得,该顾客可转动转盘2次.随机变量η的可能值为0,30,60,90,120,分别求出相应的概率,由此能求出随机变量η的分布列和数学期望.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的左顶点为,且椭圆与直线相切,

(1)求椭圆的标准方程;

(2)过点的动直线与椭圆交于两点,设为坐标原点,是否存在常数,使得?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图为某市2017年2月28天的日空气质量指数折线图.

由中国空气质量在线监测分析平台提供的空气质量指数标准如下:

(1)请根据所给的折线图补全下方的频率分布直方图(并用铅笔涂黑矩形区域),并估算该市2月份空气质量指数监测数据的平均数(保留小数点后一位);

(2)研究人员发现,空气质量指数测评中与燃烧排放的两个项目存在线性相关关系,以为单位,下表给出的相关数据:

关于的回归方程,并估计当排放量是时, 的值.

(用最小二乘法求回归方程的系数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)满足f(x+2)=f(x﹣2),当x∈(0,1)时,f(x)=3x , 则f( )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|x+1|+|x﹣1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≤log2(a2﹣4a+12)对任意实数a恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的焦点为,过点的直线两点,交轴于点轴的距离比.

(Ⅰ)求的方程;

(Ⅱ)若,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是奇函数,g(x)是偶函数,且在公共定义域{x|x∈R且x≠±1}上满足f(x)+g(x)=
(1)求f(x)和g(x)的解析式;
(2)设h(x)=f(x)﹣g(x),求h( );
(3)求值:h(2)+h(3)+h(4)+…+h(2016)+h( )+h( )+h( )+…+h( ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在梯形中, 平面,且,点上,且.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),数列的前项和为,点图象上,且的最小值为.

(1)求数列的通项公式;

(2)数列满足,记数列的前项和为,求证: .

查看答案和解析>>

同步练习册答案