精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)是奇函数,g(x)是偶函数,且在公共定义域{x|x∈R且x≠±1}上满足f(x)+g(x)=
(1)求f(x)和g(x)的解析式;
(2)设h(x)=f(x)﹣g(x),求h( );
(3)求值:h(2)+h(3)+h(4)+…+h(2016)+h( )+h( )+h( )+…+h( ).

【答案】
(1)解:由题意,f(x)+g(x)= ,①

f(﹣x)+g(﹣x)= ,即﹣f(x)+g(x)=﹣ ,②

由①②联立解得f(x)= ,g(x)=


(2)解:h(x)=f(x)﹣g(x)═ =

∴h( )= =


(3)解:∵h(x)+h( )= =1,

∴h(2)+h(3)+h(4)+…+h(2016)+h( )+h( )+h( )+…+h(

=[h(2)+h( )]+[h(3)+h( )]+…+h(2016)+h( )]

=2015


【解析】(1)由f(x)+g(x)= ,得﹣f(x)+g(x)=﹣ ,联立方程组能求出f(x),g(x).(2)由h(x)=f(x)﹣g(x)═ = ,能求出h( ).(3)由h(x)+h( )= =1,能求出h(2)+h(3)+h(4)+…+h(2016)+h( )+h( )+h( )+…+h( )的值.
【考点精析】利用函数奇偶性的性质和函数的值对题目进行判断即可得到答案,需要熟知在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇;函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C和y轴相切,圆心在直线x﹣3y=0上,且被直线y=x截得的弦长为 ,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两家快递公司其“快递小哥”的日工资方案如下:甲公司规定底薪元,每单抽成元;乙公司规定底薪元,每日前单无抽成,超过单的部分每单抽成

(1)设甲乙快递公司的“快递小哥”一日工资(单位:元)与送货单数的函数关系式为,求

(2)假设同一公司的“快递小哥”一日送货单数相同,现从两家公司各随机抽取一名“快递小哥”,并记录其天的送货单数,得到如下条形图:

若将频率视为概率,回答下列问题:

①记乙快递公司的“快递小哥”日工资为(单位:元),求的分布列和数学期望;

②小赵拟到两家公司中的一家应聘“快递小哥”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五一节期间,某商场为吸引顾客消费推出一项优惠活动,活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券.(假定指针等可能地停在任一位置,指针落在区域的边界时,重新转一次)指针所在的区域及对应的返劵金额见表.
例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

(1)已知顾客甲消费后获得n次转动转盘的机会,已知他每转一次转盘指针落在区域边界的概率为p,每次转动转盘的结果相互独立,设ξ为顾客甲转动转盘指针落在区域边界的次数,ξ的数学期望Eξ= ,方差Dξ= ,求n、p的值;
(2)顾客乙消费280元,并按规则参与了活动,他获得返券的金额记为η(元).求随机变量η的分布列和数学期望.

指针位置

A区域

B区域

C区域

返券金额(单位:元)

60

30

0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有能力互异的3人应聘同一公司,他们按照报名顺序依次接受面试,经理决定“不录用第一个接受面试的人,如果第二个接受面试的人比第一个能力强,就录用第二个人,否则就录用第三个人”,记该公司录用到能力最强的人的概率为p,录用到能力中等的人的概率为q,则(p,q)=(
A.(
B.(
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的值域是(
A.R
B.[﹣8,1]
C.[﹣9,+∞)
D.[﹣9,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2﹣a2x+3.
(1)若a=2,求f(x)在[﹣1,2]上的最值;
(2)若f(x)在(﹣ ,1)上是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于 两点.

(1)求圆的直角坐标方程及弦的长;

(2)动点在圆上(不与 重合),试求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线在平面直角坐标系下的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求曲线的普通方程及极坐标方程;

(2)直线的极坐标方程是,射线 与曲线交于点与直线交于点,求线段的长.

查看答案和解析>>

同步练习册答案