精英家教网 > 高中数学 > 题目详情

【题目】已知在梯形中, 平面,且,点上,且.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)连接于点,利用平几知识可得,再根据相似比得.最后根据线面平行判定定理得平面.(2)求二面角大小,一般利用空间向量数量积:先根据条件建立空间直角坐标系,设立各点坐标,列方程组求各平面法向量,利用向量数量积求两法向量夹角,最后根据二面角与法向量夹角关系求二面角.

试题解析:解: (Ⅰ)连接于点,连接,如图①所示.

,∴.

,∴

.

平面平面

平面.

(Ⅱ)设平面,故以为原点,过点平行的直线为轴,

所在直线为轴, 所在直线为轴,建立空间直角坐标系如图②所示,则

.

,得,得.

解得,即,

.

是平面的一个法向量,则

,则,即.

的中点,记为,连接

易求得的坐标为

.

,得

底面,得

,∴平面.

是平面的一个法向量.

.

由图可知二面角为锐二面角,

∴二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如表:

时间

周一

周二

周三

周四

周五

车流量x(万辆)

50

51

54

57

58

PM2.5的浓度y(微克/立方米)

69

70

74

78

79


(1)根据上表数据,请在如图坐标系中画出散点图;

(2)根据上表数据,用最小二乘法求出y关于x的线性回归方程 ;(保留2位小数)
(3)若周六同一时间段车流量是25万辆,试根据(2)求出的线性回归方程预测,此时PM2.5的浓度为多少(保留整数)?
参考公式: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五一节期间,某商场为吸引顾客消费推出一项优惠活动,活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券.(假定指针等可能地停在任一位置,指针落在区域的边界时,重新转一次)指针所在的区域及对应的返劵金额见表.
例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

(1)已知顾客甲消费后获得n次转动转盘的机会,已知他每转一次转盘指针落在区域边界的概率为p,每次转动转盘的结果相互独立,设ξ为顾客甲转动转盘指针落在区域边界的次数,ξ的数学期望Eξ= ,方差Dξ= ,求n、p的值;
(2)顾客乙消费280元,并按规则参与了活动,他获得返券的金额记为η(元).求随机变量η的分布列和数学期望.

指针位置

A区域

B区域

C区域

返券金额(单位:元)

60

30

0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的值域是(
A.R
B.[﹣8,1]
C.[﹣9,+∞)
D.[﹣9,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2﹣a2x+3.
(1)若a=2,求f(x)在[﹣1,2]上的最值;
(2)若f(x)在(﹣ ,1)上是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知整数对按如图规律排成,照此规律,则第68个数对是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于 两点.

(1)求圆的直角坐标方程及弦的长;

(2)动点在圆上(不与 重合),试求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于 两点.

(1)求圆的直角坐标方程及弦的长;

(2)动点在圆上(不与 重合),试求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)= ,若x∈[﹣4,﹣2)时,f(x)≥ 恒成立,则实数t的取值范围是(
A.[﹣2,0)∪(0,1)
B.[﹣2,0)∪[1,+∞)
C.[﹣2,1]
D.(﹣∞,﹣2]∪(0,1]

查看答案和解析>>

同步练习册答案