分析:(1)由
=
+3,知
-
=3,由此能求出a
n=(3n-2)•2
n.
(2)由a
n=(3n-2)•2
n,知数列{a
n}的前n项和:T
n=(3-2)•2+(3×2-2)•2
2+(3×3-2)•2
3+…+(3n-2)•3
n,由此利用错位相减法能够求出T
n.
解答:解:(1)∵
=
+3,
∴
-
=3,
∵a
1=2,∴{
}是以
=1为首项,以3为公差的等差数列,
∴
=1+(n-1)×3=3n-2,
∴a
n=(3n-2)•2
n.
(2)∵a
n=(3n-2)•2
n,
∴数列{a
n}的前n项和:
T
n=(3-2)•2+(3×2-2)•2
2+(3×3-2)•2
3+…+(3n-2)•3
n,①
2T
n=(3-2)•2
2+(3×2-2)•2
3+(3×3-2)•2
4+…+(3n-2)•3
n+1,②
①-②,得-T
n=2+3•2
2+3•2
3+3•2
4+…+3•2
n-(3n-2)•3
n+1=2+3×
-(3n-2)•3
n+1=2+3(2
n-4)-(3n-2)•3
n+1=3•2
n-10-(3n-2)•3
n+1,
∴T
n=(3n-2)•3
n+1-3•2
n+10.
点评:本题考查数列的通项公式的求法,考查数列的前n项和公式的求法,解题时要认真审题,仔细解答,注意错位相减法的合理运用.