精英家教网 > 高中数学 > 题目详情
下列几何体的三视图中,有且仅有两个视图相同的是     (   )
A.①②B.①③C.①④D.②④
D
本题考查几何体的三视图
正方体的主、左、俯三种视图均为正方形,如图,相同的有三个,故①错;
圆锥的主、左视图均为等腰三角形,俯视图为圆,如图,相同的有两个,②正确;
三棱台的主视图为梯形及一条线段,左视图为梯形,俯视图为两个三角形,如图故③错;四棱台的主视图、左视图为等腰三角形,俯视图为正方形,如图故④正确;
即②④正确
正确答案为D
 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)右图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC//PD,且PD=AD=2CE=2 .
(1)若N为线段PB的中点,求证:EN⊥平面PDB;
(2)求该几何体的体积;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM
(  )
A.和AC、MN都垂直
B.垂直于AC,但不垂直于MN
C.垂直于MN,但不垂直于AC
D.与AC、MN都不垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,矩形所在的平面与平面垂直,且分别为的中点.

(Ⅰ) 求证:直线与平面平行;
(Ⅱ)若点在直线上,且二面角的大小为,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知PA面ABC,ABBC,若PA=AC=2,AB=1
(1)求证:面PAB面PBC; (2)求二面角A-PC-B的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱锥P-ABC内,已知PA=PC=AC=,AB=BC=1,面PAC⊥面ABC,E是BC的中点.

(1)求直线PE与AC所成角的余弦值;
(2)求直线PB与平面ABC所成的角的正弦值;
(3)求点C到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图4,是半径为的半圆,为直径,点的中点,点和点为线段的三等分点,平面外一点满足平面=.
 
(1)证明:
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

12分)
如图所示,四棱锥P—ABCD的底面ABCD是正方形,PD底面ABCD,PD=AD

(Ⅰ)求证:平面PAC平面PBD
(Ⅱ)求PC与平面PBD所成角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥P - ABCD中,ΔPCD为等边三角形,四边形ABCD为矩形,平面PDC丄平面ABCD,M,N、E分别是AB,PD,PC的中点,AB =2AD.

(I)求证DE丄MN;
(II)求二面角B-PA-D的余弦值.

查看答案和解析>>

同步练习册答案