精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM
(  )
A.和AC、MN都垂直
B.垂直于AC,但不垂直于MN
C.垂直于MN,但不垂直于AC
D.与AC、MN都不垂直
A
此题的条件使得建立空间坐标系方便,且选项中研究的位置关系也适合用空间向量来证明其垂直关系,故应先建立坐标系,设出边长,据几何特征,给出各点的坐标,验证向量内积是否为零.
解:以DA、DC、DD1所在的直线为x轴、y轴、z轴建立空间直角坐标系.设正方体的棱长为2a,则D(0,0,0)、D1(0,0,2a)、M(0,0,a)、A(2a,0,0)、C(0,2a,0)、O(a,a,0)、N(0,a,2a).
=(-a,-a,a),=(0,a,a),=(-2a,2a,0).
?=0,?=0,
∴OM⊥AC,OM⊥MN.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间中垂直于同一条直线的两条直线的位置关系是
A.平行B.相交C.异面D.以上都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知ABCD-A′B′C′D′是平行六面体.
(1)化简++,并在图形中标出其结果;
(2)设M是底面ABCD的中心,N是侧面BCC′B′的对角线BC′上的点,且BN∶NC′=3∶1,设=α+β+γ,试求α,β,γ之值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.

(1)求证:BE∥平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求三棱锥P-DEF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为的正方体中,为线段上的点,且满足
.
(Ⅰ)当时,求证:平面平面
(Ⅱ)试证无论为何值,三棱锥的体积
恒为定值;
(Ⅲ)求异面直线所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间点到平面的距离如下定义:过空间一点作平面的垂线,该点和垂足之间的距离即为该点到平面的距离.平面两两互相垂直,点,点的距离都是,点上的动点,满足的距离是到到点距离的倍,则点的轨迹上的点到的距离的最小值为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列几何体的三视图中,有且仅有两个视图相同的是     (   )
A.①②B.①③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在六面体中,平面∥平面平面,,,且,

(1)求证:平面平面
(2)求证:∥平面
(3)求三棱锥的体积.

查看答案和解析>>

同步练习册答案