精英家教网 > 高中数学 > 题目详情
(2010•台州一模)反复抛掷一个质地均匀的正方体骰子,依次记录每一次落地时骰子向上的点数,当记有三个不同点数时即停止抛掷.若抛掷四次恰好停止,则记有这四次点数的所有不同结果的种数为
360
360
.(用数字作答)
分析:第一次有6种情况,第二次有5种情况,第三次有3种情况,第四次有3种情况,根据分步计数原理可得这四次点数的所有不同结果的种数.
解答:解:由题意可得第一次有6种情况,第二次有5种情况,第三次有3种情况,第四次的情况与
前3次中的某一种情况相同,故第四次有3种情况,
根据分步计数原理可得这四次点数的所有不同结果的种数为 6×5×4×3=360,
故答案为 360.
点评:本题主要考查分步计数原理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•台州一模)已知集合A={x|x<3} B={1,2,3,4},则(?RA)∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州一模)设m为直线,α,β,γ为三个不同的平面,下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州一模)在实数等比数列{an}中,a2+a6=34,a3a5=64,则a4=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州一模)设F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,已知点P(
a2
c
3
b
)(其中c为椭圆的半焦距),若线段PF1的中垂线恰好过点F2,则椭圆离心率的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州一模)某电子科技公司遇到一个技术性难题,决定成立甲、乙两个攻关小组,按要求各自独立进行为期一个月的技术攻关,同时决定对攻关限期内攻克技术难题的小组给予奖励.已知此技术难题在攻关期限内被甲小组攻克的概率为
2
3
,被乙小组攻克的概率为
3
4

(1)设ξ为攻关期满时获奖的攻关小组数,求ξ的分布列及数学期望Eξ;
(2)设η为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数f(x)=|η-
1
2
|x
在定义域内单调递增”为事件C,求事件C发生的概率.

查看答案和解析>>

同步练习册答案