精英家教网 > 高中数学 > 题目详情

【题目】l1 , l2 , l3是空间三条不同的直线,则下列命题正确的是(  )
A.l1⊥l2 , l2⊥l3l1∥l3
B.l1⊥l2 , l2∥l3l1⊥l3
C.l1∥l2∥l3l1 , l2 , l3共面
D.l1 , l2 , l3共点l1 , l2 , l3共面

【答案】B
【解析】解:对于A,通过常见的图形正方体,从同一个顶点出发的三条棱两两垂直,A错;
对于B,∵l1⊥l2 , ∴l1 , l2所成的角是90°,又∵l2∥l3∴l1 , l3所成的角是90°∴l1⊥l3 , B对;
对于C,例如三棱柱中的三侧棱平行,但不共面,故C错;
对于D,例如三棱锥的三侧棱共点,但不共面,故D错.
故选B.
【考点精析】本题主要考查了平面的基本性质及推论和空间中直线与直线之间的位置关系的相关知识点,需要掌握如果一条直线上的两点在一个平面内,那么这条直线在此平面内;过不在一条直线上的三点,有且只有一个平面;如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】0.32 , log20.3,20.3这三个数之间的大小顺序是(
A.0.32<20.3<log20.3
B.0.32<log20.3<20.3
C.log20.3<0.32<20.3
D.log20.3<20.3<0.32

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知抛物线若y2=2px过点P(1,2).
(1)求实数p的值;
(2)若直线若l交抛物线于A(x1 , y1),B(x2 , y2),两点,且y1y2=﹣4,求证直线l过定点并求出该点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如表中的数阵为“森德拉姆筛”,其特点是每行每列都成等差数列,记第i行第j列的数为aij , 则数字109在表中出现的次数为

 2

 3

 4

 5

 6

 7

 3

 5

 7

 9

 11

 13

 4

 7

 10

 13

 16

 19

 5

 9

 13

 17

 21

 25

 6

 11

 16

 21

 26

 31

 7

 13

 19

 25

 31

 37

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2,3},B={x|x2<9},则A∩B=(
A.{﹣2,﹣1,0,1,2,3}
B.{﹣2,﹣1,0,1,2}
C.{1,2,3}
D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(UA)∪B为(  )
A.{1,2,4}
B.{2,3,4}
C.{0,2,3,4}
D.{0,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2ax+1﹣3(a>0,且a≠1)的图象经过的定点坐标是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的方程为x+2y﹣1=0,点P的坐标为(1,﹣2).
(Ⅰ)求过P点且与直线l平行的直线方程;
(Ⅱ)求过P点且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a<0,﹣1<b<0,则下列不等式关系成立的是(
A.ab2<ab<a
B.a<ab<ab2
C.ab2<a<ab
D.a<ab2<ab

查看答案和解析>>

同步练习册答案