精英家教网 > 高中数学 > 题目详情
若一个数列的前n项和Sn=1-2+3-4+…+(-1)n+1n,则S17+S33+S50=(    )。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有一个项数为10的实数等比数列{an},Sn(n≤10)表示该数列的前n项和.当2≤n≤10时,若Sk,S10,S7成等差数列,求证ak-1,a9,a6也成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差是d,Sn是该数列的前n项和、
(1)试用d,Sm,Sn表示Sm+n,其中m,n均为正整数;
(2)利用(1)的结论求解:“已知Sm=Sn(m≠n),求Sm+n”;
(3)若各项均为正数的等比数列{bn}的公比为q,前n项和为Sn,试类比问题(1)的结论,写出一个相应的结论且给出证明,并利用此结论求解问题:“已知各项均为正数的等比数列{bn},其中S10=5,S20=15,求数列{bn}的前50项和S50.”

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•滨州一模)已知等差数列{an}的前n项和胃Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次取出第2项、第4项、第8项,…,第2n项,…,按原来顺序组成一个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)已知数列{bn},若存在正整数T,对一切n∈N*都有bn+r=bn,则称数列{bn}为周期数列,T是它的一个周期.例如:
数列a,a,a,a,…①可看作周期为1的数列;
数列a,b,a,b,…②可看作周期为2的数列;
数列a,b,c,a,b,c,…③可看作周期为3的数列…
(1)对于数列②,它的一个通项公式可以是an =
a   n为正奇数
b    n为正偶数
,试再写出该数列的一个通项公式;
(2)求数列③的前n项和Sn
(3)在数列③中,若a=2,b=
1
2
,c=-1,且它有一个形如bn=Asin(ωn+φ)+B的通项公式,其中A、B、ω、φ均为实数,A>0,ω>0,|φ|<
π
2
,求该数列的一个通项公式bn

查看答案和解析>>

同步练习册答案