【题目】如图,马路
南边有一小池塘,池塘岸
长40米,池塘的最远端
到
的距离为400米,且池塘的边界为抛物线型,现要在池塘的周边建一个等腰梯形的环池塘小路
,且
均与小池塘岸线相切,记
.
![]()
(1)求小路的总长,用
表示;
(2)若在小路与小池塘之间(图中阴影区域)铺上草坪,求所需铺草坪面积最小时,
的值.
【答案】(1)
(2)当
时,所需铺草坪面积最小
【解析】
(1)建立合适的平面直角坐标系,求出小池塘的边界抛物线方程,然后设出直线
的方程,和抛物线联立,可求出切点坐标, 同时可求出
的坐标,表示出
,变形即可得结果;
(2)要所需铺草坪面积最小,需要梯形面积最小,利用(1)的结果表示出梯形面积,利用基本不等式求出最值.
解:(1)以
为原点,
所在直线为
轴,过点
作垂直于
轴的直线为
轴,建立直角坐标系,所以
,
因为小池塘的边界为抛物线型,设边界所在的抛物线方程为
,
因为
是曲线上一点,
所以
,即抛物线方程为
.
设
所在的直线方程:
,
联立
,即
,
因为
与抛物线相切,
所以
①.
记直线
与抛物线切于点
,
所以
点的横坐标为
,即
.
易得点
,点
,由对称性可知
,点
.
所以小路总长为
,
由①及
可知
;
(2)记草坪面积为
,梯形面积为
,小池塘面积为
,
所以
,因为小池塘面积
为定值,要使得草坪面积最小,则梯形面积最小
,
由①知
,当且仅当“
”取得“=”
所以当
时,梯形面积最小,即草坪面积最小.
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题不正确的是( )
A.研究两个变量相关关系时,相关系数r为负数,说明两个变量线性负相关
B.研究两个变量相关关系时,相关指数R2越大,说明回归方程拟合效果越好.
C.命题“x∈R,cosx≤1”的否定命题为“x0∈R,cosx0>1”
D.实数a,b,a>b成立的一个充分不必要条件是a3>b3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)设
:实数x满足|x﹣m|<2,设
:实数x满足
>1;若¬p是¬q的必要不充分条件,求实数m的取值范围
(2)已知p:函数f(x)=ln(x2﹣ax+3)的定义城为R,已知q:已知
且
,指数函数g(x)=(a﹣1)x在实数域内为减函数;若¬p∨q为假命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,
经过原点的直线
将
分成左、右两部分,记左、右两部分的面积分别为
,则
取得最小值时,直线
的斜率( )
A.等于1B.等于
C.等于
D.不存在
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
关于直线
对称且过点
和
,直线
过定点
.
(1)证明:直线
与圆
相交;
(2)记直线
与圆
的两个交点为
,
.
①若弦长
,求直线方程;
②求
面积的最大值及
面积的最大时的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P和非零实数
,若两条不同的直线
均过点P,且斜率之积为
,则称直线
是一组“
共轭线对”,如直
是一组“
共轭线对”,其中O是坐标原点.
![]()
(1)已知
是一组“
共轭线对”,求
的夹角的最小值;
(2)已知点A(0,1)、点
和点C(1,0)分别是三条直线PQ,QR,RP上的点(A,B,C与P,Q,R均不重合),且直线PR,PQ是“
共轭线对”,直线QP,QR是“
共轭线对”,直线RP,RQ是“
共轭线对”,求点P的坐标;
(3)已知点
,直线
是“
共轭线对”,当
的斜率变化时,求原点O到直线
的距离之积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com