【题目】已知点P和非零实数
,若两条不同的直线
均过点P,且斜率之积为
,则称直线
是一组“
共轭线对”,如直
是一组“
共轭线对”,其中O是坐标原点.
![]()
(1)已知
是一组“
共轭线对”,求
的夹角的最小值;
(2)已知点A(0,1)、点
和点C(1,0)分别是三条直线PQ,QR,RP上的点(A,B,C与P,Q,R均不重合),且直线PR,PQ是“
共轭线对”,直线QP,QR是“
共轭线对”,直线RP,RQ是“
共轭线对”,求点P的坐标;
(3)已知点
,直线
是“
共轭线对”,当
的斜率变化时,求原点O到直线
的距离之积的取值范围.
【答案】(1)最小值为
;(2)P(3,3)或
;(3)
.
【解析】
(1)设l1的斜率为k,则l2的斜率为
,两直线的夹角为α,利用夹角公式及基本不等式求最值,即可得到l1,l2的夹角的最小值;
(2)设直线PR,PQ,QR的斜率分别为k1,k2,k3,可得
,求解可得k1,k2,k3的值,进一步得到直线PR与直线PQ的方程,联立得P的坐标;
(3)设l1:
,
,其中k≠0,利用两点间的距离公式可得原点O到直线l1,l2的距离,变形后利用基本不等式求解.
(1)设
的斜率为k,则
的斜率为
,两直线的夹角为a,
则
,
等号成立的条件是
,所以最小值为
;
(2)设直线
的斜率分别为
,
则
得
或
.
当
时,直线
的方程为y=
,直线
的方程为y=
,联立得,P(3,3);
当
时,,直线
的方程为y=
,直线
的方程为y=-
,联立得,
;
故所求为P(3,3)或
;
(3)设
,
,其中k
,
故
=
由于
(等号成立的条件是
),故
,
.
科目:高中数学 来源: 题型:
【题目】设函数
,其中x>0,k为常数,e为自然对数的底数.
(1)当k≤0时,求
的单调区间;
(2)若函数
在区间(1,3)上存在两个极值点,求实数k的取值范围;
(3)证明:对任意给定的实数k,存在
(
),使得
在区间(
,
)上单调递增.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,马路
南边有一小池塘,池塘岸
长40米,池塘的最远端
到
的距离为400米,且池塘的边界为抛物线型,现要在池塘的周边建一个等腰梯形的环池塘小路
,且
均与小池塘岸线相切,记
.
![]()
(1)求小路的总长,用
表示;
(2)若在小路与小池塘之间(图中阴影区域)铺上草坪,求所需铺草坪面积最小时,
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是______.
①若直线
与直线
互相垂直,则![]()
②若
,
两点到直线
的距离分别是
,
,则满足条件的直线
共有3条
③过
,
两点的所有直线方程可表示为![]()
④经过点
且在
轴和
轴上截距都相等的直线方程为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)已知等差数列{an}中,a1=1,a3=﹣3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{an}的前k项和Sk=﹣35,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两点
、
,动点
满足
,记
的轨迹为曲线
,直线
(
)交曲线
于
、
两点,点
在第一象限,
轴,垂足为
,连结
并延长交曲线
于点
.
(1)求曲线
的方程,并说明曲线
是什么曲线;
(2)若
,求△
的面积;
(3)证明:△
为直角三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产A、B两种产品,生产每一吨产品所需的劳动力和煤、电耗如下表:
产品品种 | 劳动力 | 煤 | 电 |
A产品 | 3 | 9 | 4 |
B产品 | 10 | 4 | 5 |
已知生产每吨A产品的利润是7万元,生产每吨B产品的利润是12万元,现在条件有限,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问:该企业生产A、B两种产品各多少吨,才能获得最大利润?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y = f(x)是定义域为R的偶函数,当x≥0时,函数f(x)的图象是由一段抛物线和一条射线组成(如图所示).
![]()
①当
时,y的取值范围是______;
②如果对任意
(b <0),都有
,那么b的最大值是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com