分析 (1)利用三角函数恒等变换的应用化简可得f(x)=$\sqrt{3}$sinx,g(x)=1-cosx,由f(α)=$\frac{3\sqrt{3}}{5}$,可求sinα,利用同角三角函数基本关系式可求cosα,进而可求g(α).
(2)由(1)利用诱导公式可求f(x-1080°)=$\sqrt{3}$sinx,由f(x-1080°)≥g(x),可得sin(x+30°)≥$\frac{1}{2}$,
结合范围x∈[0°,360°],利用正弦函数的图象和性质即可得解.
解答 (本题满分为12分)
解:(1)∵f(x)=sin(x-30°)+cos(x-60°)=$\frac{\sqrt{3}}{2}$sinx-$\frac{1}{2}$cosx+$\frac{1}{2}$cosx+$\frac{\sqrt{3}}{2}$sinx=$\sqrt{3}$sinx,…2分
g(x)=2sin2$\frac{x}{2}$=1-cosx,…4分
由f(α)=$\frac{3\sqrt{3}}{5}$,可得:sinα=$\frac{3}{5}$,
又α为第一象限角,
∴cos$α=\frac{4}{5}$,
∴g(α)=$\frac{1}{5}$.…5分
(2)由(1)可得f(x)=$\sqrt{3}$sinx,
∴f(x-1080°)=$\sqrt{3}$sin(x-1080°)=$\sqrt{3}$sinx,
∴f(x-1080°)≥g(x)等价于$\sqrt{3}$sinx≥1-cosx,即:$\sqrt{3}$sinx+cosx≥1,…7分
可得:2sin(x+30°)≥1,
∴sin(x+30°)≥$\frac{1}{2}$,…9分
∴k•360°+30°≤x+30°≤k•360°+150°(k∈Z),
又∵x∈[0°,360°],
∴0°≤x≤120°,
∴f(x-1080°)≥g(x)的解集为:[0°,120°].…12分
点评 本题主要考查了三角函数恒等变换的应用,同角三角函数基本关系式,诱导公式,正弦函数的图象和性质的综合应用,考查了转化思想和数形结合思想,属于中档题.
科目:高中数学 来源: 题型:解答题
| 赔付金额(元) | 0 | 1000 | 2000 | 3000 | 4000 |
| 车辆数(辆) | 500 | 130 | 100 | 150 | 120 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 120 | B. | 150 | C. | 200 | D. | 240 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5.6 | B. | 6.4 | C. | 7.2 | D. | 8.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com