精英家教网 > 高中数学 > 题目详情
18.设{an}是正数组成的数列,a1=2.若点(an,an+12-2an+1)(n∈N*)在函数f(x)=$\frac{1}{3}$x3+x2-2的导函数y=f'(x)图象上.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2}{{{a_{n+1}}•{a_n}}}$,是否存在最小的正数M,使得对任意n∈N*都有b1+b2+…+bn<M成立?请说明理由.

分析 (1)f(x)=$\frac{1}{3}$x3+x2-2可得:f′(x)=x2+2x.把点(an,an+12-2an+1)(n∈N*)代入,利用等差数列的通项公式即可得出.
(2)利用“裂项求和”方法及其数列的单调性即可得出.

解答 解:(1)f(x)=$\frac{1}{3}$x3+x2-2可得:f′(x)=x2+2x.
∴${a_{n+1}}^2-2{a_{n+1}}={a_n}^2+2{a_n}⇒({a_{n+1}}+{a_n})({a_{n+1}}-{a_n}-2)=0$,
又∵{an}是正项数列,∴an+1-an-2=0,即an+1-an=2,
又∵a1=2,∴an=a1+(n-1)d=2n.
(2)$b_n=\frac{2}{{a_{n+1}.a_n}}=\frac{1}{2n}-\frac{1}{2(n+1)}$,
∴b1+b2+…$+{b_n}=(\frac{1}{2}-\frac{1}{4})+(\frac{1}{4}-\frac{1}{6})+…(\frac{1}{2n}-\frac{1}{2n+2})=\frac{1}{2}-\frac{1}{2n+2}$<$\frac{1}{2}$,
∴M的最小正数为$\frac{1}{2}$.

点评 本题考查了等差数列的通项公式、“裂项求和”方法、导数的运算法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知f(x)=sin(x-30°)+cos(x-60°),g(x)=2sin2$\frac{x}{2}$.
(1)若α为第一象限角且f(α)=$\frac{3\sqrt{3}}{5}$,求g(α)之值;
(2)求f(x-1080°)≥g(x)在[0,360°]内的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知m>1,且关于x的不等式m-|x-2|≥1的解集为[0,4].
(1)求m的值;
(2)若a,b均为正实数,且满足2a+b+m+4=ab,求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|a-x|+|2x-4|
(1)若a=1,求f(x)的最小值;
(2)若f(a)<f(0),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某地地铁3号线北段于2016年12月16日开通运营,已知地铁列车每12分钟发一班,其中在车站停1分钟,则乘客到达站台立即上车(不需要等待)的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{1}{10}$D.$\frac{1}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x0是函数f(x)=2sinx-πlnx(x∈(0,π))的零点,0<x1<x2<π,则
①x0∈(1,e);
②x0∈(e,π);
③f(x1)-f(x2)<0;
④f(x1)-f(x2)>0.
其中正确的命题是(  )
A.①④B.②④C.①③D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=2sin2($\frac{π}{4}$-x)+$\sqrt{3}$cos2x-1,则f(x)的单调增区间为$[-\frac{7π}{12}+kπ,-\frac{π}{12}+kπ](k∈Z)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.两平行直线x+2y-1=0和x+2y+4=0之间的距离是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=ex-$\frac{1}{2}$x2在点(x0,f(x0))处的切线与直线x+y-6=0垂直,则切点坐标为(0,1).

查看答案和解析>>

同步练习册答案