精英家教网 > 高中数学 > 题目详情
已知a为实数,数列{an}满足a1=a,当n≥2时an=
an-1-3,(an-1>3)
4-an-1,(an-1≤3)

(Ⅰ)当a=100时,求数列{an}的前100项的和S100
(Ⅱ)证明:对于数列{an},一定存在k∈N*,使0<ak≤3.
分析:(Ⅰ)把a=100代入,先利用数列的递推关系式求出数列的各项的特点,再分组求和即可;
(Ⅱ)先对a1=a的取值分:①若0<a1≤3;②若a1>3两种情况分别求出数列各项的规律,即可证明结论.
解答:解:(1)当a=100时,由题意知数列an的前34项成首项为100,公差为-3的等差数列,
从第35项开始,奇数项均为3,偶数项均为1,
从而S100=(100+97+94+…+1)+(3+1+3+1+…+3+1)=
(100+1)×34
2
+(3+1)×
66
2
=1717+132=1849

(2)证明:①若0<a1≤3,则题意成立;
②若a1>3,此时数列an的前若干项满足an-an-1=3,即an=a1-3(n-1).
设a1∈(3k,3k+3],(k≥1,k∈N*),
则当n=k+1时,ak+1=a1-3k∈(0,3].
从而,此时命题成立.
综上:对于数列{an},一定存在k∈N*,使0<ak≤3.
点评:本题的第一问主要考查数列求和的分组求和法.关键点在于利用递推关系式求出数列的各项的特点,再分组求和即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a为实数,数列{an}满足a1=a,当n≥2时,an=
an-1-3,(an-1>3)
4-an-1,(an-1≤3)

(Ⅰ)当a=100,时,求数列{an}的前100项的和S100
(Ⅱ)证明:对于数列{an},一定存在k∈N*,使0<ak≤3;
(Ⅲ)令bn=
an
2n-(-1)n
,当2<a<3时,求证:
n
i=1
bi
20+a
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,数列{an}满足a1=a,当n≥2时,an=
an-1-3     (an-1>3)
4-an-1    (an-1≤3)

(1)当a=100时,填写下列列表格:
n 2 3 35 100
an
(2)当a=100时,求数列{an}的前100项的和S100
(3)令bn=
an
(-2)n
Tn=b1+b2+…+bn
,求证:当1<a<
4
3
时,Tn
4-3a
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)已知a为实数,数列{an}满足a1=a,当n≥2时,an=
an-1-4 (an-1>4)
5-an-1 (an-1≤4)

(I)当a=200时,填写下列表格;
N 2 3 51 200
an
(II)当a=200时,求数列{an}的前200项的和S200
(III)令b n=
an
(-2)n
,Tn=b1+b2…+bn求证:当1<a<
5
3
时,T n
5-3a
3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a为实数,数列{an}满足a1=a,当n≥2时,数学公式
(1)当a=100时,填写下列列表格:
n2335100
an
(2)当a=100时,求数列{an}的前100项的和S100
(3)令数学公式,求证:当数学公式时,数学公式

查看答案和解析>>

同步练习册答案