精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为的准线,轴,轴,交抛物线两点,交两点,已知的面积是2倍,则中点轴的距离的最小值为(

A.B.1C.D.2

【答案】B

【解析】

由题可知,准线方程为,设,可得,分类讨论,当轴时,可得中点到的距离为;当不垂直于轴时,求出直线的方程,利用点到直线的距离公式以及弦长公式求出的面积,在求出的面积,根据两个三角形的面积关系可得中点轴的距离为,利用基本不等式即可求解.

由题可知,准线方程为,如图:

,则

轴时,其中点到的距离为.

不垂直于轴时,直线的方程为:

点到直线的距离为,则

所以有

因为已知的面积是2倍,

,化简可得(不合题意舍去)或

中点轴的距离,不能取等号)

综上,中点轴的距离最小值为1.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的定义域,部分对应值如表,的导函数的图象如图所示,下列关于函数的结论正确的是(

0

4

5

1

2

2

1

A.函数的极大值点有2

B.函数上是减函数

C.时,的最大值是2,那么的最大值为4

D.时,函数4个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,讨论函数的单调性

(2)当时,,对任意,都有恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,是曲线段是参数,)的左、右端点,上异于的动点,过点作直线的垂线,垂足为.

1)建立适当的极坐标系,写出点轨迹的极坐标方程;

2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段: 后得到如图所示的频率分布直方图.问:

(1)估计在40名读书者中年龄分布在的人数;

(2)求40名读书者年龄的平均数和中位数;

(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象的一个对称中心,图象的一条对称轴,且上单调,则符合条件的值之和为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆的直径,点 在圆上, ,矩形和圆所在的平面互相垂直,已知

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的大小;

(Ⅲ)当的长为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某气象站统计了4月份甲、乙两地的天气温度(单位),统计数据的茎叶图如图所示,

1)根据所给茎叶图利用平均值和方差的知识分析甲,乙两地气温的稳定性;

2)气象主管部门要从甲、乙两地各随机抽取一天的天气温度,若甲、乙两地的温度之和大于或等于,则被称为甲、乙两地往来温度适宜天气,求甲、乙两地往来温度适宜天气的概率.

查看答案和解析>>

同步练习册答案