精英家教网 > 高中数学 > 题目详情
等比数列{an}中,已知对任意自然数n,a1+a2+a3+…+an=2n-1,则a12+a22+a32+…+an2=(  )
分析:由于Sn=a1+a2+…+an=2n-1,则可得a1=S1=1,an=Sn-Sn-1可求an,然后由等比数列的性质可知数列{an2}是以q2为公比,以a12为首项的等比数列,利用等比数列的求和公式可求a12+a22+…+an2
解答:解:设等比数列的公比为q,则由等比数列的性质可知数列{an2}是以q2为公比的等比数列
Sn=a1+a2+…+an=2n-1
∵a1=S1=1,an=Sn-Sn-1=2n-1-(2n-1-1)=2n-1适合n=1
an=2n-1
则由等比数列的性质可知数列{an2}是以q2=4为公比,以1为首项的等比数列
a12+a22+…+an2=
1-4n
1-4
=
4n-1
3

故选D
点评:本题主要考查了利用数列的递推公式an=
S1,n=1
Sn-Sn-1,n≥2
,等比数列的性质的应用,等比数列的求和公式的应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}中,a2=18,a4=8,则公比q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设数列{an}的前n项和为Sn,证明:Sn<n-ln(n+1);
(Ⅲ)设bn=an
9
10
n,证明:对任意的正整数n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a3=2,a7=32,则a5=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,an=2×3n-1,则由此数列的奇数项所组成的新数列的前n项和为
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,已知对n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于(  )

查看答案和解析>>

同步练习册答案