精英家教网 > 高中数学 > 题目详情
将如图所示的边长为a的等边三角形铁片,剪去三个四边形,做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为x,容积为V(x)。
(1)写出函数V(x)的解析式,并求出函数的定义域;
(2)求当x为多少时,容器的容积最大?并求出最大容积。

解:(1)因为容器的高为x,则做成的正三棱柱形容器的底边长为

函数的定义域为
(2)实际问题归结为求函数V(x)在区间上的最大值点,
先求V(x)的极值点,在开区间内,
令V′(x)=0,即,解得,x2=(舍去),
因为在区间内,x1可能是极值点,
当0<x<x1时,V′(x)>0;
时,V′(x)<0,
因为x1是极大值点,且在区间内,x1是唯一的极值点,
所以是V(x)的最大值点,并且最大值为
即当正三棱柱形容器高为时,容器的容积最大为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、如图1,在边长为12的正方形AA′A′1A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA′1分别交BB1,CC1于点P、Q,将该正方形沿BB1、CC1折叠,使得A′A′1与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1,请在图2中解决下列问题:
(1)求证:AB⊥PQ;
(2)在底边AC上有一点M,满足AM;MC=3:4,求证:BM∥平面APQ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方形ABCD的边长为2
2
,将△ABC沿对角线AC折起,使平面ABC⊥平面ACD,得到如图所示的三棱锥B-ACD.若O为AC边的中点,M,N分别为线段DC,BO上的动点(不包括端点),且BN=CM.设BN=x,则三棱锥N-AMC的体积y=f(x)的函数图象大致是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:等边△ABC的边长为2,D,E分别是AB,AC的中点,沿DE将△ADE折起,使AD⊥DB,连AB,AC,得如图所示的四棱锥A-BCED.
(Ⅰ)求证:AC⊥平面ABD;
(Ⅱ)求四棱锥A-BCED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图1,在边长为3的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=
3
2
2

(1)证明:DE∥平面BCF;     
(2)证明:CF⊥平面ABF;
(3)当AD=
2
3
时,求三棱锥F-DEG的体积VF-DEG

查看答案和解析>>

同步练习册答案