【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,且f(x)在( , )单调,则ω的最大值为 .
【答案】9
【解析】解:∵函数f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴, ∴ω(﹣ )+φ=nπ,n∈Z,且ω +φ=n′π+ ,n′∈Z,
∴相减可得ω =(n′﹣n)π+ =kπ+ ,k∈Z,即ω=2k+1,即ω为奇数.
∵f(x)在( , )单调,
(Ⅰ)若f(x)在( , )单调递增,
则ω +φ≥2kπ﹣ ,且ω +φ≤2kπ+ ,k∈Z,
即﹣ω ﹣φ≤﹣2kπ+ ①,且ω +φ≤2kπ+ ,k∈Z ②,
把①②可得 ωπ≤π,∴ω≤12,故有奇数ω的最大值为11.
当ω=11时,﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ=﹣ .
此时f(x)=sin(11x﹣ )在( , )上不单调,不满足题意.
当ω=9时,﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ= ,
此时f(x)=sin(9x+ )在( , )上单调递减,不满足题意;
故此时ω无解.
(Ⅱ)若f(x)在( , )单调递减,
则ω +φ≥2kπ+ ,且ω +φ≤2kπ+ ,k∈Z,
即﹣ω ﹣φ≤﹣2kπ﹣ ③,且ω +φ≤2kπ+ ,k∈Z ④,
把③④可得 ωπ≤π,∴ω≤12,故有奇数ω的最大值为11.
当ω=11时,﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ=﹣ .
此时f(x)=sin(11x﹣ )在( , )上不单调,不满足题意.
当ω=9时,﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ= ,
此时f(x)=sin(9x+ )在( , )上单调递减,满足题意;
故ω的最大值为9.
故答案为:9.
先跟据正弦函数的零点以及它的图象的对称性,判断ω为奇数,由f(x)在( , )单调,分f(x)在( , )单调递增、单调递减两种情况,分别求得ω的最大值,综合可得它的最大值.
科目:高中数学 来源: 题型:
【题目】先后掷子(子的六个面上分别标有1,2,3,4,5,6个点)两次,落在水平桌面后,记正面朝上的点数分别为x,y,设事件A为“x+y为偶数”,事件B为“x,y中有偶数且x≠y”,则概率P(B|A)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中, : (为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线.
(1)求的普通方程及的直角坐标方程,并说明它们分别表示什么曲线;
(2)若分别为, 上的动点,且的最小值为2,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将直角△ABC沿着平行BC边的直线DE折起,使得平面A′DE⊥平面BCDE,其中D、E分别在AC、AB边上,且AC⊥BC,BC=3,AB=5,点A′为点A折后对应的点,当四棱锥A′-BCDE的体积取得最大值时,求AD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,且满足a1=2,Sn-4Sn-1-2=0(n≥2,n∈Z).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=log2an,Tn为{bn}的前n项和,求证 <2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.
(1)求A中学至少有1名学生入选代表队的概率;
(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知复数z在复平面内对应的点在第四象限,且z是方程x2﹣4x+5=0的根.
(1)求复数z;
(2)复数w=a﹣ (a∈R)满足|w﹣z|<2 ,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com