精英家教网 > 高中数学 > 题目详情
不等式|x|>3的解集为(  )
A、{x|x>3}
B、{x|x>±3}
C、{x|-3<x<3}
D、{x|x<-3或x>3}
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:由条件利用绝对值的意义求得不等式的解集.
解答: 解:由不等式|x|>3,可得x>3或 x<-3,
故选:D.
点评:本题主要考查绝对值的意义,绝对值不等式的解法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
m
=(a,-2),
n
=(1,1-a),且
m
n
,则a=(  )
A、-1B、2或-1C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
e1
e2
的模分别为1,2,它们的夹角为60°,则向量
e1
-
e2
与-4
e1
+
e2
的夹角为(  )
A、60°B、120°
C、30°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

如果
a
+
b
=2
i
-8
j
a
-
b
=-8
i
+16
j
,则
a
b
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知凼数f(x)=2cos2x-2sinxcosx+1
(1)求方程f(x)-1=0在x∈(0,π)内的所有解的和;
(2)把凼数y=f(x)的图象向左平移m(m>0)个单位,使所得函数的图象关于点(0,2)对称,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x>-1,则x+
2
x+1
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式|2m-1|≤1的整数解有且仅有一个值1.
(1)求整数m的值;
(2)已知a,b,c均为正数,若2a+2b+2c=m,求
a2
b
+
b2
c
+
c2
a
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面说法正确的是(  )
A、命题“?x∈R,使得x2+x+1≥0”的否定是“?x∈R,使得x2+x+1≥0”
B、实数x>y是x2>y2成立的充要条件
C、设p,q为简单命题,若“p∨q”为假命题,则“¬p∧¬q”也为假命题
D、命题“若cosα≠1,则α≠0”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,0,1),
b
=(-1,1,2),则
a
+
b
=
 

查看答案和解析>>

同步练习册答案