精英家教网 > 高中数学 > 题目详情

数学公式(a>0且a≠1),g(x)是f(x)的反函数.
(1)求g(x);
(2)当x∈[2,6]时,恒有数学公式成立,求t的取值范围;
(3)当0<a≤数学公式时,试比较f(1)+f(2)+…+f(n)与n+4的大小,并说明理由.

解:(1)由题意得:ax=>0
故g(x)=,x∈(-∞,-1)∪(1,+∞);
(2)由
①当a>1时,>0
又因为x∈[2,6],所以0<t<(x-1)2(7-x)
令h(x)=(x-1)2(7-x)=-x3+9x2-15x+7,x∈[2,6]
则h'(x)=-3x2+18x-15=-3(x-1)(x-5)
列表如下:
x 2 (2,5) 5 (5,6)6
h'(x) + 0-
h(x) 5 递增极大值32 递减 25
所以h(x)最小值=5,
所以0<t<5
②当0<a<1时,0<
又因为x∈[2,6],所以t>(x-1)2(7-x)>0
令h(x)=(x-1)2(7-x)=-x3+9x2-15x+7,x∈[2,6]
由①知h(x)最大值=32,x∈[2,6]
所以t>32
综上,当a>1时,0<t<5;当0<a<1时,t>32;
(3)设a=,则p≥1
当n=1时,f(1)=1+≤3<5
当n≥2时
设k≥2,k∈N*
则f(k)=
所以f(k)≤1+=1+=1+
从而f(2)+f(3)+…+f(n)≤n-1+<n+1
所以f(1)+f(2)+f(3)+…+f(n)<f(1)+n+1≤n+4
综上,总有f(1)+f(2)+f(3)+…+f(n)<n+4.
分析:(1)欲求原函数的反函数,即从原函数式中反解出x,后再进行x,y互换,即得反函数的解析式.
(2)先分离参数t,t<(x-1)2(7-x)转化为求右边函数式的最小值即可,对于高次函数的最值问题,可利用导数研究解决;
(3)欲比较f(1)+f(2)+…+f(n)与n+4的大小,分而解决之,先比较f(k)与某一式子的大小关系,利用二项式定理可得:f(k)≤1+=1+=1+,从而问题解决.
点评:本小题考查函数、反函数、不等式、导数及其应用等基础知识,考查划归,分类整合等数学思想方法,以及推理论证、分析与解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0且a≠1,设p:函数y=ax在R上单调递增,q:设函数y=
2x-2a,(x≥2a)
2a,(x<2a)
,函数y≥1恒成立,若p∧q为假,p∨q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x),偶函数g(x)满足f(x)+g(x)=ax(a>0且a≠1).
(1)求证:f(2x)=2f(x)g(x);
(2)设f(x)的反函数f-1(x),当a=
2
-1
时,比较f-1[g(x)]与-1的大小,证明你的结论;
(3)若a>1,n∈N*,且n≥2,比较f(n)与nf(1)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=logax(a>0且a≠1),若2,f(a1),…,f(an),2n+4(n=1,2,3,…)成等差数列,
(1)求数列{an}的通项公式;
(2)设{bn}=anf(an),若数列{bn}的前n项和是Sn,试求Sn
(3)令cn=anlgan,问是否存在实数a,使得数列{cn}中每一项恒小于它后面的项,若存在,请求出a的范围;,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区三模)已知k∈R,a>0且a≠1,b>0且b≠1,函数f(x)=ax+k•bx
(1)如果实数a、b满足a>1,ab=1,试判断函数f(x)的奇偶性,并说明理由;
(2)设a>1>b>0,k≤0,判断函数f(x)在R上的单调性并加以证明;
(3)若a=2,b=
12
,且k>0,问函数f(x)的图象是不是轴对称图形?如果是,求出函数f(x)图象的对称轴;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知奇函数f(x),偶函数g(x)满足f(x)+g(x)=ax(a>0且a≠1).
(1)求证:f(2x)=2f(x)g(x);
(2)设f(x)的反函数f-1(x),当a=
2
-1
时,比较f-1[g(x)]与-1的大小,证明你的结论;
(3)若a>1,n∈N*,且n≥2,比较f(n)与nf(1)的大小,并证明你的结论.

查看答案和解析>>

同步练习册答案